【题目】已知函数g(x)=ex﹣ax2﹣ax,h(x)=ex﹣2x﹣lnx.其中e为自然对数的底数.
(1)若f(x)=h(x)﹣g(x).
①讨论f(x)的单调性;
②若函数f(x)有两个不同的零点,求实数a的取值范围.
(2)已知a>0,函数g(x)恰有两个不同的极值点x1,x2,证明:.
【答案】(1)①见解析;②(0,1);(2)证明见解析
【解析】
(1)①对求导,分别讨论与的情况即可;
②由①若有两个不同的零点,则,由于当x→0时,f(x)→+∞;当x→+∞时,f(x)→+∞,则只需使得即可,进而求解;
(2)先对求导,由题可得,两式相减可得,转化为,设,即证,进而利用导函数判断单调性证明即可.
(1)f(x)=h(x)﹣g(x)=ex﹣2x﹣lnx﹣ex+ax2+ax=ax2+(a﹣2)x﹣lnx(x>0),
①(x>0),
(i)当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上递减;
(ii)当a>0时,令f′(x)>0,解得;令f′(x)<0,解得,
∴函数f(x)在递减,在递增;
综上,当a≤0时,函数f(x)在(0,+∞)上单调递减;
当a>0时,函数f(x)在上单调递减,在上单调递增
②由①知,若a≤0,函数f(x)在(0,+∞)上单调递减,不可能有两个不同的零点,故a>0;
且当x→0时,f(x)→+∞;当x→+∞时,f(x)→+∞;
故要使函数f(x)有两个不同的零点,只需,即,
又函数在(0,+∞)上为增函数,且,故的解集为(0,1),
故实数a的取值范围为(0,1)
(2)证明: g′(x)=ex﹣2ax﹣a,依题意,则,两式相减得,,
因为a>0,要证,即证,即证,
两边同除以,即证,
令t=x1﹣x2(t<0),即证,
令,则,
令,则,
当t<0时,p′(t)<0,所以p(t)在(﹣∞,0)上递减,
∴p(t)>p(0)=0,
∴h′(t)<0,
∴h(t)在(﹣∞,0)上递减,
∴h(t)>h(0)=0,即,
故.
科目:高中数学 来源: 题型:
【题目】如图1,已知等边的边长为3,点,分别是边,上的点,且,.如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②二面角大小为;③到平面的距离为.在中任选一个,补充在下面问题的条件中,并作答:
在线段上是否存在一点,使三棱锥的体积为,若存在,求出的值;若不存在,请说明理由.
注:如果多个条件分别解答,按第一个解答给分。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐,其中空中梯队编有12个梯队,在领队机梯队、预警指挥机梯队、轰炸机梯队、舰载机梯队、歼击机梯队、陆航突击梯队这6个梯队中,某学校为宣传的需要,要求甲同学需从中选3个梯队了解其组成情况,其中舰载机梯队、歼击机梯队两个梯队中至少选择一个,则不同的选法种数为( )
A.12种B.16种C.18种D.20种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.
(Ⅰ)求椭圆与椭圆的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l:x﹣y0将圆O:分成的两部分的面积之比为( )
A.(4π):(8π)B.(4π﹣3):(8π+3)
C.(2π﹣2):(10π+2)D.(2π﹣3):(10π+3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,二面角中,,射线,分别在平面,内,点A在平面内的射影恰好是点B,设二面角、与平面所成角、与平面所成角的大小分别为,则( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com