精英家教网 > 高中数学 > 题目详情
3.已知集合$A=\{x\left|{\frac{x-5}{x+1}≤0}\right.\}$,B={x|x2-2x-m<0}.
(1)当m=3时,求(∁RB)∩A;
(2)若A∩B={x|-1<x<4},求实数m的值.

分析 (1)化简集合A,求出m=3时集合B,再根据补集与交集的定义写出运算结果;
(2)根据交集的定义,得出4是方程x2-2x-m=0,从而求出m的值.

解答 解:集合$A=\{x\left|{\frac{x-5}{x+1}≤0}\right.\}$={x|-1<x≤5},
B={x|x2-2x-m<0}.
(1)当m=3时,B={x|x2-2x-3<0}={x|-1<x<3}
∴∁RB={x|x≤-1或x≥3},
∴(∁RB)∩A={x|3≤x≤5};
(2)若A∩B={x|-1<x<4},
则4是方程x2-2x-m=0的实数根,
解得m=42-2×4=8.

点评 本题考查了集合的化简与运算问题,也考查了不等式与方程的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)试确定该函数的解析式;
(2)该函数的图角可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(1,7),$\overrightarrow{b}$=(-3,4),则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是(  )
A.5$\sqrt{2}$B.$\frac{5\sqrt{2}}{2}$C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.i为虚数单位,复数$\frac{2i}{1+i}$=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题P:?x>0,总有2x>1,则¬P为(  )
A.?x>0,总有2x≤1B.?x≤0,总有2x≤1C.?x≤0,使得2x≤1D.?x>0,使得2x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.若$λ\overrightarrow{a}+μ\overrightarrow{b}$=$\overrightarrow{0}$,则λ=μ=0B.若$\overrightarrow{a}•\overrightarrow{b}$=0,则$\overrightarrow{a}$∥$\overrightarrow{b}$
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|D.若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{a}$$•\overrightarrow{b}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0)与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)有相同的焦点,点A是两曲线的一个公共点,若|AF|=$\frac{5p}{6}$,则椭圆的离心率为(  )
A.$\frac{-5+\sqrt{51}}{2}$B.$\frac{-5+\sqrt{61}}{6}$C.$\frac{1}{2}$D.$\frac{2\sqrt{2}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.复数z=$\frac{1-i}{2i}$,其中i是虚数单位,则复数z的虚部是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx-(a+1)x-$\frac{1}{x}$
(1)当a<-1时,讨论f(x)的单调性
(2)当a=1时,若g(x)=-x-$\frac{1}{x}$-1,证明:当x>1时,g(x)的图象恒在f(x)的图象上方
(3)证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N*,n≥2)

查看答案和解析>>

同步练习册答案