精英家教网 > 高中数学 > 题目详情

【题目】12分)

如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值

【答案】

1详见解析

2

【解析】(1)取中点,连接

分别为中点

,又

四边形为平行四边形

平面

(2)取中点,连,由于为正三角形

平面平面,平面平面

平面,连,四边形为正方形。

平面平面平面

而平面平面

,垂足为平面

与平面所成角,

中,

中,

为坐标原点,分别为轴建立空间直角坐标系,

设平面的法向量为

,而平面的法向量为

设二面角的大角为为锐角)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若 {an}是等比数列,a4a7=﹣512,a3+a8=124,且公比q为整数,则a10=(
A.256
B.﹣256
C.512
D.﹣512

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为( ,0),求θ的最小值.
(3)对任意的x∈[ ]时,方程f(x)=m有两个不等根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为(
A.2
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,△PAB和△CAB都是以AB为斜边的等腰直角三角形.
(1)证明:AB⊥PC;
(2)若AB=2PC= ,求三棱锥P﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= . (Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)判断函数f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中点.
(Ⅰ)在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明l⊥CE;
(Ⅱ)设(Ⅰ)中所作直线l与CE确定的平面为α,求点C1到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.
(1)求证:BM⊥平面ADM;
(2)求直线AE与平面ADM所成角的正弦值.

查看答案和解析>>

同步练习册答案