精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: (a>b>0)的离心率为,短轴长为2.直线l:y=kx+m与椭圆C交于M,N两点,又l与直线 分别交于A,B两点,其中点A在第一象限,点B在第二象限,且△OAB的面积为2(O为坐标原点).

(1)求椭圆C的方程;

(2)求的取值范围.

【答案】(1);(2)

【解析】试题分析:

(1)由离心率及可得,于是可得椭圆的方程.(2)结合题意逐步求解,先求得点A,B的坐标,并根据点的位置得到;然后根据直线与椭圆的位置关系可得,于是.由△OAB的面积为2计算可得,最后根据数量积的定义将表示,并可得到所求范围.

试题解析:

(1)∵离心率e=

,解得a2=2,

∴椭圆的方程为+y2=1.

(2)由可得点A的坐标为

可得点B的坐标为

又点A在第一象限,点B在第二象限,

∴m2(1-4k2)>0,

又m2≥0,

∴1-4k2>0.

∵|AB|=

原点到直线的距离为,即△OAB底边AB上的高为

∴S△OAB·· = 2,

∴m2=1-4k2.

消去y整理得(1+2k2)x2+4kmx+2m2-2=0,

∵直线与椭圆交于两点,

∴Δ=16k2m2-4(1+2k2)(2m2-2)=48k2>0,解得k2>0.

设M(x1,y1),N(x2,y2),

则x1+x2=-,x1·x2

∴y1·y2=(kx1+m)(kx2+m)=

·=x1x2+y1y2-7.

∵0<k2<

∴1+2k2

·.

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的极坐标方程为:ρ2-4ρcos(θ-)+6=0.

(1)将极坐标方程化为普通方程;

(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足约束条件

1)若点在上述不等式所表示的平面区域内,求实数的取值范围.

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为何值时,方程组

1)有一个实数解,并求出方程组的解集;

2)有两个不相等的实数解;

3)没有实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件且向量,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0123四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码之和等于6,则中一等奖,等于5中二等奖,等于43中三等奖.

1)求中三等奖的概率;

2)求中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若曲线处的切线与直线垂直,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案