精英家教网 > 高中数学 > 题目详情
6.为了得到函数y=3cos2x的图象,只需将函数$y=3cos(2x+\frac{π}{2})$的图象上每一个点(  )
A.横坐标向左平动$\frac{π}{4}$个单位长度B.横坐标向右平移$\frac{π}{4}$个单位长度
C.横坐标向左平移$\frac{π}{8}$个单位长度D.横坐标向右平移$\frac{π}{8}$个单位长度

分析 利用y=Acos(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数$y=3cos(2x+\frac{π}{2})$=3cos2(x+$\frac{π}{4}$)的图象上每一个点横坐标向右平移$\frac{π}{4}$个单位长度,
可得函数y=3cos2x的图象,
故选:B.

点评 本题主要考查y=Acos(ωx+φ)的图象变换规律,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知幂函数$f(x)={(m-1)^2}{x^{{m^2}-4m+2}}$在(0,+∞)上单调递增,函数g(x)=2x-t,?x1∈[1,6)时,总存在x2∈[1,6)使得f(x1)=g(x2),则t的取值范围是(  )
A.B.t≥28或t≤1C.t>28或t<1D.1≤t≤28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{A{A_1}}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{BM}$可表示为(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(0,-1)的直线与抛物线x2=-2y公共点的个数为(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列区间中,函数f(x)=3x-2的零点所在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{5}+2t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4=0.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)已知点A(0,$\sqrt{5}$),直线l与曲线C相交于点M、N,求$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将3本相同的语文书和2本相同的数学书分给四名同学,每人至少1本,不同的分配方法数有(  )
A.24B.28C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平行六面体ABCD-A'B'C'D'中,$AB=3,AD=4,AA'=4,∠BAD=\frac{π}{2}$,$∠BAA'=\frac{π}{3}$,$∠DAA'=\frac{π}{3}$,则AC'=$\sqrt{69}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在各项为正实数的等差数列{an}中,其前2016项的和S2016=1008,则$\frac{1}{{{a_{1001}}}}+\frac{9}{{{a_{1016}}}}$的最小值为(  )
A.12B.16C.$\frac{1}{84}$D.$\frac{2}{251}$

查看答案和解析>>

同步练习册答案