£¨ÎÄ¿Æ£©ÒÑÖªn2£¨n¡Ý4ÇÒn¡ÊN*£©¸öÕýÊýÅųÉÒ»¸önÐÐnÁеÄÊýÕó£º
¡¡¡¡¡¡¡¡¡¡µÚ1ÁС¡ µÚ2ÁС¡¡¡µÚ3ÁС¡ ¡­µÚnÁÐ
µÚ1ÐС¡¡¡ a1£¬1 a1£¬2 a1£¬3 ¡­a1£¬n
µÚ2ÐС¡¡¡ a2£¬1 a2£¬2 a2£¬3 ¡­a2£¬n
µÚ3ÐС¡¡¡ a3£¬1 a3£¬2 a3£¬3 ¡­a3£¬n
¡­
µÚnÐС¡¡¡ an£¬1 an£¬2 an£¬3 ¡­an£¬n
ÆäÖÐai£¬k£¨i£¬k¡ÊN*£¬ÇÒ1¡Üi¡Ün£¬1¡Ük¡Ün£©±íʾ¸ÃÊýÕóÖÐλÓÚµÚiÐеÚkÁеÄÊý£¬ÒÑÖª¸ÃÊýÕóÖи÷ÐеÄÊýÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¸÷ÁеÄÊýÒÀ´Î³É¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÒÑÖªa2£¬3=8£¬a3£¬4=20£®
£¨1£©Çóa1£¬1a2£¬2£»
£¨2£©ÉèAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1ÇóÖ¤£ºAn+nÄܱ»3Õû³ý£®

½â£º£¨1£©ÓÉÌâÒ⣬a2£¬3=8£¬
a3£¬4=20£¬
ËùÒÔa1£¬3=3£¬a1£¬4=5£¬
¹ÊµÚ1Ðй«²îd=1£¬
ËùÒÔa1£¬1=2£¬a1£¬2=3£¬
µÃa2£¬2=2a1£¬2=6£®
£¨2£©Í¬£¨1£©¿ÉµÃ£¬a1£¬n=n+1£¬a2£¬n-1
=2n£¬a3£¬n-2
=22£¨n-1£©£¬¡­£¬an-1£¬2
=3¡Á2n-2£¬an£¬1
=2¡Á2n-1
ËùÒÔAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1
=£¨n+1£©+n¡Á21+£¨n-1£©¡Á22+£¨n-2£©¡Á23+¡­+2¡Á2n-12An
=£¨n+1£©¡Á21+n¡Á22+£¨n-1£©¡Á23+¡­+3¡Á2n-1+2¡Á2n
Á½Ê½Ïà¼õ£¬µÃAn=-£¨n+1£©+21+22+23+¡­+2n-1+2¡Á2n
=
=-£¨n+1£©+2n-2+2¡Á2n
=3¡Á2n-3-n
ËùÒÔAn-n=3¡Á£¨2n-1£©£¬
¹ÊAn+nÄܱ»3Õû³ý£®
·ÖÎö£º£¨1£©ÓÉÌâÒ⣬a2£¬3=8£¬a3£¬4=20£¬ËùÒÔa1£¬3=3£¬a1£¬4=5£¬¹ÊµÚ1Ðй«²îd=1£¬ÓÉ´ËÄÜÇó³öa1£¬1ºÍa2£¬2£®
£¨2£©ÓÉa1£¬n=n+1£¬a2£¬n-1=2n£¬a3£¬n-2=22£¨n-1£©£¬¡­£¬an-1£¬2=3¡Á2n-2£¬an£¬1=2¡Á2n-1£¬ÖªAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1=£¨n+1£©+n¡Á21+£¨n-1£©¡Á22+£¨n-2£©¡Á23+¡­+2¡Á2n-1£¬ÓÉ´íλÏà¼õ·¨Äܹ»Çó³öAn£®ÓÉ´ËÄܹ»Ö¤Ã÷An+nÄܱ»3Õû³ý£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×ÛºÏÔËÓã¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£¬ÈÝÒ׳ö´í£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÑ°ÕÒ¹æÂÉ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí¿Æ£©ÒÑÖªº¯Êýf£¨x£©=alnx-ax-3£¨a¡ÊR£©£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôº¯Êýy=f£¨x£©µÄͼÏóÔڵ㣨2£¬f£¨2£©£©´¦µÄÇÐÏßµÄÇãб½ÇΪ45¡ã£¬¶ÔÈÎÒâµÄt¡Ê[1£¬2]£¬Èôº¯Êýg(x)=x3+x2[f/(x)+
m
2
]
ÔÚÇø¼ä£¨t£¬3£©ÉÏÓÐ×îÖµ£¬ÇóʵÊýmÈ¡Öµ·¶Î§£»
£¨3£©ÇóÖ¤£ºln£¨22+1£©+ln£¨32+1£©+ln£¨42+1£©+¡­+ln£¨n2+1£©£¼1+2lnn!£¨n¡Ý2£¬n¡ÊN*£©
£¨ÎÄ¿Æ£© ÒÑÖªº¯Êýf(x)=ax3+
1
2
x2-2x+c

£¨1£©Èôx=-1ÊÇf£¨x£©µÄ¼«ÖµµãÇÒf£¨x£©µÄͼÏó¹ýÔ­µã£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨2£©Èôg(x)=
1
2
bx2-x+d
£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊÇ·ñ´æÔÚʵÊýb£¬Ê¹µÃº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏóºãÓк¬x=-1µÄÈý¸ö²»Í¬½»µã£¿Èô´æÔÚ£¬Çó³öʵÊýbµÄÈ¡Öµ·¶Î§£»·ñÔò˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎÄ¿Æ£©ÒÑÖªn2£¨n¡Ý4ÇÒn¡ÊN*£©¸öÕýÊýÅųÉÒ»¸önÐÐnÁеÄÊýÕó£º
          µÚ1ÁР    µÚ2ÁР   µÚ3ÁР  ¡­µÚnÁÐ
µÚ1ÐР    a1£¬1 a1£¬2 a1£¬3 ¡­a1£¬n
µÚ2ÐР    a2£¬1 a2£¬2 a2£¬3 ¡­a2£¬n
µÚ3ÐР    a3£¬1 a3£¬2 a3£¬3 ¡­a3£¬n
¡­
µÚnÐР    an£¬1 an£¬2 an£¬3 ¡­an£¬n
ÆäÖÐai£¬k£¨i£¬k¡ÊN*£¬ÇÒ1¡Üi¡Ün£¬1¡Ük¡Ün£©±íʾ¸ÃÊýÕóÖÐλÓÚµÚiÐеÚkÁеÄÊý£¬ÒÑÖª¸ÃÊýÕóÖи÷ÐеÄÊýÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¸÷ÁеÄÊýÒÀ´Î³É¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÒÑÖªa2£¬3=8£¬a3£¬4=20£®
£¨1£©Çóa1£¬1a2£¬2£»
£¨2£©ÉèAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1ÇóÖ¤£ºAn+nÄܱ»3Õû³ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ¿Æ£©ÒÑÖªn2£¨n¡Ý4ÇÒn¡ÊN*£©¸öÕýÊýÅųÉÒ»¸önÐÐnÁеÄÊýÕó£º
          µÚ1ÁР    µÚ2ÁР   µÚ3ÁР  ¡­µÚnÁÐ
µÚ1ÐР    a1£¬1 a1£¬2 a1£¬3 ¡­a1£¬n
µÚ2ÐР    a2£¬1 a2£¬2 a2£¬3 ¡­a2£¬n
µÚ3ÐР    a3£¬1 a3£¬2 a3£¬3 ¡­a3£¬n
¡­
µÚnÐР    an£¬1 an£¬2 an£¬3 ¡­an£¬n
ÆäÖÐai£¬k£¨i£¬k¡ÊN*£¬ÇÒ1¡Üi¡Ün£¬1¡Ük¡Ün£©±íʾ¸ÃÊýÕóÖÐλÓÚµÚiÐеÚkÁеÄÊý£¬ÒÑÖª¸ÃÊýÕóÖи÷ÐеÄÊýÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¸÷ÁеÄÊýÒÀ´Î³É¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÒÑÖªa2£¬3=8£¬a3£¬4=20£®
£¨1£©Çóa1£¬1a2£¬2£»
£¨2£©ÉèAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1ÇóÖ¤£ºAn+nÄܱ»3Õû³ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007-2008ѧÄê½­ËÕÊ¡ÄϾ©ÊнðÁêÖÐѧ¸ßÈý£¨ÉÏ£©ÖÊÁ¿¼ì²âÊýѧÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ¿Æ£©ÒÑÖªn2£¨n¡Ý4ÇÒn¡ÊN*£©¸öÕýÊýÅųÉÒ»¸önÐÐnÁеÄÊýÕó£º
          µÚ1ÁР    µÚ2ÁР   µÚ3ÁР  ¡­µÚnÁÐ
µÚ1ÐР    a1£¬1 a1£¬2 a1£¬3 ¡­a1£¬n
µÚ2ÐР    a2£¬1 a2£¬2 a2£¬3 ¡­a2£¬n
µÚ3ÐР    a3£¬1 a3£¬2 a3£¬3 ¡­a3£¬n
¡­
µÚnÐР    an£¬1 an£¬2 an£¬3 ¡­an£¬n
ÆäÖÐai£¬k£¨i£¬k¡ÊN*£¬ÇÒ1¡Üi¡Ün£¬1¡Ük¡Ün£©±íʾ¸ÃÊýÕóÖÐλÓÚµÚiÐеÚkÁеÄÊý£¬ÒÑÖª¸ÃÊýÕóÖи÷ÐеÄÊýÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¸÷ÁеÄÊýÒÀ´Î³É¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÒÑÖªa2£¬3=8£¬a3£¬4=20£®
£¨1£©Çóa1£¬1a2£¬2£»
£¨2£©ÉèAn=a1£¬n+a2£¬n-1+a3£¬n-2+¡­+an£¬1ÇóÖ¤£ºAn+nÄܱ»3Õû³ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸