精英家教网 > 高中数学 > 题目详情
3.若f(x)=2x,则下列等式不成立的是(  )
A.f(x+1)=2f(x)B.f(2x)=[f(x)]2C.f(x+y)=f(x)•f(y)D.f(xy)=f(x)•f(y)

分析 根据指数幂的运算性质即可判断答案.

解答 解:对于A:f(x+1)=2x+1=2×2x=2f(x),故正确;
对于B:f(2x)=22x=(2x2=[f(x)]2,故正确;
对于C:f(x+y)=2x+y=2x•2y=f(x)•f(y),故正确,
对于D:则不正确,
故选:D.

点评 本题考查了指数函数的性质和指数幂的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:
级数全月应纳税所得额x税率
1不超过500元部分5%
2超过500元至2000元部分10%
3超过2000元至5000元部分15%
9超过100000元部分45%
(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中既是奇函数又是增函数的是(  )
A.f(x)=x2B.f(x)=-x3C.f(x)=x|x|D.f(x)=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{lo{g}_{\frac{2}{3}}(3x-1)}$的定义域为$(\frac{1}{3},\frac{2}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中,a1=1,a2=4,满足an+2=$\frac{5}{3}$an+1-$\frac{2}{3}$an
(I)设bn=an+1-an,求证数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知奇函数f(x)=$\frac{1+m•{2}^{x}}{1+{2}^{x}}$的定义域为[-1,1],则m=-1;f(x)的值域为[-$\frac{1}{3}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合M={x|0≤x≤2},N={x|0≤x≤2},则在下面四个图形中,能表示集合M到集合N的函数关系的是②③(填序号). 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知已知数列{an}的前n项的和为Sn=n2+n+3,则这个数列的通项公式为an=$\left\{\begin{array}{l}{5,n=1}\\{2n,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列1+$\frac{1}{2}$,2+$\frac{1}{4}$,3+$\frac{1}{8}$,…,n+$\frac{1}{{2}^{n}}$,…的前10项和是56-$\frac{1}{{2}^{10}}$.

查看答案和解析>>

同步练习册答案