精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$;
(1)求函数f(x)的单调递增区间;
(2)当x$∈[0,\frac{7π}{24}]$时,求函数f(x)的值域.

分析 利用三角恒等变换化简函数f(x),根据三角函数的单调性求出函数f(x)的递增区间,
再根据三角函数的图象与性质求出f(x)在x∈[0,$\frac{7π}{24}$]的值域.

解答 解:函数f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$
=$\sqrt{2}$(sinxcosx+cos2x)-$\frac{\sqrt{2}}{2}$
=$\sqrt{2}$($\frac{1}{2}$sin2x+$\frac{1+cos2x}{2}$)-$\frac{\sqrt{2}}{2}$…(1分)
=$\frac{\sqrt{2}}{2}$sin2x+$\frac{\sqrt{2}}{2}$cos2x
=sin(2x+$\frac{π}{4}$);…(2分)
(1)当-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z时,函数f(x)单调递增,…(4分)
∴-$\frac{3π}{4}$+2kπ≤2x≤$\frac{π}{4}$+2kπ,k∈Z,
∴-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,k∈Z,
∴函数f(x)的递增区间为[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z;…(6分)
(2)当x∈[0,$\frac{7π}{24}$]时,2x∈[0,$\frac{7π}{12}$],
2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{6}$],
sin(2x+$\frac{π}{4}$)∈[$\frac{1}{2}$,1];…(8分)
∴f(x)∈[$\frac{1}{2}$,1],…(10分)
即函数f(x)的值域为[$\frac{1}{2}$,1].   …(12分)

点评 本题考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则($\overrightarrow{a}$+$\overrightarrow{b}$)2=$25-12\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正三棱锥V-ABC中,底面边长为8,侧棱长为2$\sqrt{6}$,计算它的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=cos2x-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$,
(1)写出f(x)图象的对称中心的坐标和单调递增区间;
(2)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x-sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值及此时x的取值集合;
(2)若f(α)=2,且α∈[$\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$],求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知三角形ABC面积为3cm2,BD=3AB,AF=3AC,EC=4BC,那么三角形DEF的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2cos2$\frac{ωx}{2}$+cos(ωx+$\frac{π}{3}$),(其中ω>0)的最小正周期为π,在锐角△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-$\frac{1}{2}$,c=3,△ABC的面积为6$\sqrt{3}$,则△ABC的外接圆面积为(  )
A.45πB.49πC.D.$\frac{49π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数x、y满足不等式组$\left\{\begin{array}{l}1≤x+y≤2\\-1≤x-y≤1\end{array}\right.$,则z=x+2y的取值范围是$[1,\frac{7}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lg$\frac{2x}{ax+b}$,f(1)=0,当x>0时,恒有f(x)-f($\frac{1}{x}$)=lgx.
(1)求f(x)的表达式及定义域;
(2)若方程f(x)=lgt有解,求实数t的取值范围;
(3)若方程f(x)=lg(8x+m)的解集为∅,求实数m的取值范围.

查看答案和解析>>

同步练习册答案