已知函数
(1)写出函数的单调区间;
(2)若在恒成立,求实数的取值范围;
(3)若函数在上值域是,求实数的取值范围.
(1)增区间, 减区间;(2)实数的取值范围为
(3)实数的取值范围为
解析试题分析:(1)由已知函数可化为,根据函数的单调区间,得出所求函数的单调区间;(2)由(1)可知不等式可化为,根据函数在的单调性,可求得函数在上的值域,从而求出所实数的范围;(3)由(1)可知函数的单调区间,可将区间分与两种情况进行讨论,根据函数的单调性及值域,分别建立关于,的方程组,由方程组解的情况,从而求出实数的取值范围.
试题解析:(1)增区间, 减区间 2分
(2)在上恒成立即在上恒成立
易证,函数在上递减,在上递增
故当上有
故的取值范围为 5分
(3)或
①当时,在上递增,
即即方程有两个不等正实数根
方程化为:故得 10分
②当时
在上递减
即(1)-(2)得
又, 13分
综合①②得实数的取值范围为 14分
考点:1.分段函数;2.函数的单调性;3.分类讨论思想.
科目:高中数学 来源: 题型:解答题
设函数其中,曲线在点处的切线方程为.
(I)确定的值;
(II)设曲线在点处的切线都过点(0,2).证明:当时,;
(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,是大于零的常数.
(Ⅰ)当时,求的极值;
(Ⅱ)若函数在区间上为单调递增,求实数的取值范围;
(Ⅲ)证明:曲线上存在一点,使得曲线上总有两点,且成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com