设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若当时,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数.()
(1)若函数有三个零点,且,,求函数 的单调区间;
(2)若,,试问:导函数在区间(0,2)内是否有零点,并说明理由.
(3)在(Ⅱ)的条件下,若导函数的两个零点之间的距离不小于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知函数.
(Ⅰ)当时,试判断的单调性并给予证明;
(Ⅱ)若有两个极值点.
(i) 求实数a的取值范围;
(ii)证明:。 (注:是自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(a为实常数).
(1)若,求证:函数在(1,+.∞)上是增函数;
(2)求函数在[1,e]上的最小值及相应的值;
(3)若存在,使得成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数.
(Ⅰ)讨论函数在定义域内的极值点的个数;
(Ⅱ)若函数在处取得极值,对,恒成立,
求实数的取值范围;
(Ⅲ)当且时,试比较的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com