精英家教网 > 高中数学 > 题目详情
1.点P的极坐标为$(2,\frac{5π}{6})$,以极点为原点,以极轴为x轴正方向建立直角坐标系,则点P的直角坐标为$(-\sqrt{3},1)$.

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把极坐标化为直角坐标.

解答 解:点P的极坐标为$(2,\frac{5π}{6})$,可得$x=2cos\frac{5π}{6}$=-$\sqrt{3}$,y=$2sin\frac{5π}{6}$=1.
∴点P的直角坐标为$(-\sqrt{3},1)$,
故答案为:$(-\sqrt{3},1)$.

点评 本题考查了极坐标化为直角坐标,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos(ωx+φ)(0<φ<π)是奇函数.
(1)求φ的值;
(2)若f(x)在区间(0,$\frac{π}{4}$)上是增函数,求ω取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=sin(x-$\frac{π}{3}$),则其单调增区间为$[-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ]$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,△ABC是等边三角形,BM=CN,∠1=60°,∠DMN=2∠N,求证:∠N=30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{3}$sin2x+2cos2x+m在区间[0,$\frac{π}{2}$]上的最大值为3,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC中,AC=2,BC=1,∠ACB=$\frac{2π}{3}$,D为AB上的点,若AD=2DB,则cos∠CDB=$\frac{\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(sinx+cosx)2+2cos2x-2.
(1)求函数f(x)的最小正周期和单调增区间;
(2)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,求函数f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,直线y=kx与函数y=lnx相切于点P(m,n),则函数f(x)=lnx-kx在x=e处,取得极大值,为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,已知多面体ABCD-A1B1C1D1是棱长为1的正方体.
(1)求证:平面AB1D1∥平面BDC1
(2)求四棱锥D1-AB1C1D的体积.

查看答案和解析>>

同步练习册答案