精英家教网 > 高中数学 > 题目详情
第(1)小题满分6分,第(2)小题满分8分.
如图:在正方体中,的中点,是线段上一点,且.
(1)  求证:
(2)  若平面平面,求的值.[
(1)见解析;(2).
本试题主要考查了立体几何中的线面垂直和面面垂直的运用。
解:(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,
-------------------2分
于是:-------------------4分
因为,所以------------5分
故:-------------------6分
(2)由(1)可知的法向量取 -----------------8分
,则-------------------10分
又设平面CDE的法向量为
 --------12分
因为,所以-------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱中,,点是棱的中点.

(Ⅰ)证明:平面AA1C1C平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,侧棱垂直底面的三棱柱中,是侧棱上的动点.
(1)当时,求证:
(2)若二面角的平面角的余弦值为,试求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,⊥面
的中点.
(Ⅰ)求证:
  (Ⅱ)求二面角的余弦值;
(Ⅲ)在侧棱上是否存在点,使得
?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中, . 分别为棱的中点.
(1)求二面角的平面角的余弦值;
(2)在线段上是否存在一点,使得
若存在,确定其位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是矩形的四棱锥P—ABCD中AB=2,BC=,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.
(1)证明:侧面PAB⊥侧面PBC;

 

 
(2)求侧棱PC与底面ABCD所成的角;

(3)求直线AB与平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,直线,则下列四个命题:①;②;③;④.其中正确的是(     ).
A.①②B.③④C.②④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.直线a、b互相异面,直线b、c相互异面,则直线a、c互相异面
B.直线a、b互相垂直,直线b、c互相垂直,则直线a、c也互相垂直
C.直线a、b互相平行,直线b、c互相平行,则直线a、c也互相平行
D.直线a、b相交,直线b、c也相交,则直线a、c也相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.                
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求证:AC1∥平面CDB1.

查看答案和解析>>

同步练习册答案