精英家教网 > 高中数学 > 题目详情
已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.
(Ⅰ); (Ⅱ)

试题分析:(Ⅰ)由于x=1是函数的极值点,所以可以求出.即通过求导可以知道函数的单调递减区间(1,5).又由于函数在区间上单调递减.所以区间 是区间(1,5)的子区间.即可得m的取值范围.
(Ⅱ)由不等式
恒成立.所以要先求出的最大值.即函数f(x)最大值与最小值相减的绝对值.另外的求出g(x)的最小值再解不等式.即可求得结论.本题的综合性较强,要理解清楚题意才能完整解答.
试题解析:.(Ⅰ).首先x>0.得.令.即f(x)的单调递减区间是(1,5).因为f(x)在区间(2m-1,m+1)上单调递减.所以(2m-1,m+1) (1,5).所以.
(Ⅱ)由(1)..列表如下:
..所以.所以恒成立等价于恒成立.因为.当且仅当时取等号.所以.所以.所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:;(Ⅱ)求的最小值,并指出此时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数)。
⑴若,求上的最大值和最小值;
⑵若对任意,都有,求的取值范围;
⑶若上的最大值为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)若,设是函数的两个极值点,且,记分别为的极大值和极小值,令,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的值域为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=ex-ax+,x已知斜率为k的直线与y=f(x)的图象交于A(x1,y1),B(x2,y2)(x1x2)两点,若对任意的a<一2,k>m恒成立,则m的最大值为(      )
A.-2+B.0C.2+D.2+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图象在点处的切线方程为,则函数的图象在点 处的切线方程为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设动直线与函数的图象分别交于点A、B,则|AB|的最小值为                     (    )
A.   B.  C.    D.

查看答案和解析>>

同步练习册答案