精英家教网 > 高中数学 > 题目详情
16.核算某项税率,需用公式K=(1-7x)n(n∈N*).现已知K的展开式中各项的二项式系数之和是64,用四舍五入的方法计算当$x=\frac{3}{700}$时K的值.若精确到0.001,其千分位上的数字应是4.

分析 利用二项式系数和公式2n,列出方程求出n,利用二项式定理将二项式展开求出近似值.

解答 解:由2n=64,得n=6.
于是y≈C60+C61•$(-7×\frac{3}{700})$+C62$(-7×\frac{3}{700})^{2}$
=1-0.18+0.0135≈0.834.
故答案为:4

点评 本题考查二项式系数和公式是2n;利用二项式定理的展开式求二项式的近似值.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年吉林省高一下学期期末联考数学试卷(解析版) 题型:填空题

一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将一张边长为6cm的纸片按如图l所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置.若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是$\frac{8\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{2}}}{2}$,上顶点B是抛物线x2=4y的焦点.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若P、Q是椭圆M上的两个动点,且OP⊥OQ(O是坐标原点),由点O作OR⊥PQ于R,试求点R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列各数:101011(2),1210(3),110(8),68(12)中最小的数为1210(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,方格纸上正方形小格的边长为1,图中粗实线画出的是由一个正方体截得的一个几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}$B.$\frac{32}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.小李参加一种红包接龙游戏:他在红包里塞了12元,然后发给朋友A,如果A猜中,A将获得红包里的所有金额;如果A未猜中,A将当前的红包转发给朋友B,如果B猜中,A、B平分红包里的金额;如果B未猜中,B将当前的红包转发给朋友C,如果C猜中,A、B和C平分红包里的金额;如果C未猜中,红包里的钱将退回小李的账户,设A、B、C猜中的概率分别为$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{3}$,且A、B、C是否猜中互不影响.
(Ⅰ)求A恰好获得4元的概率;
(Ⅱ)设A获得的金额为X元,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则此几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)在x=1处的导数为1,则$\lim_{x→∞}\frac{f(1-x)-f(1+x)}{3x}$的值为(  )
A.3B.-$\frac{3}{2}$C.$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案