精英家教网 > 高中数学 > 题目详情
已知
a
=(cosx+sinx,sinx),
b
=(cosx+sinx,-2sinx),且f(x)=
a
.
b

(1)求f(x)的解析式,并用f(x)=Asin(wx+φ)的形式表示;
(2)求方程f(x)=1的解.
分析:本题考查的知识点是平面向量数量积的运算,两角和与差的正弦函数,倍角公式,y=Asin(ωx+φ)中参数的物理意义
(1)由
a
=(cosx+sinx,sinx),
b
=(cosx+sinx,-2sinx),根据平面向量的数量积运算公式,我们易得到f(x)=
a
.
b
的解析式,结合倍角公式及辅助角公式,我们易将其化为正弦型函数的形式.
(2)由(1)的结论,我们可在得到一个三角方程,解三角方程即可得到结论.
解答:解:(1)f(x)=
a
.
b

=(cosx+sinx,sinx).(cosx+sinx,-2sinx)
=(cosx+sinx)2-2sin2x(4分)
=cos2x+2sinxcosx-sin2x=cos2x+sin2x
=
2
sin(2x+
π
4
)(8分)
(2)由f(x)=1得
2
sin(2x+
π
4
)=1
sin(2x+
π
4
)=
2
(9分)
∴2x+
π
4
=
π
4
+2kπ(K∈Z)(10分)
或2x+
π
4
=
4
+2kπ(K∈Z)(11分)
所以方程的解为.{x|x=kπ或x=
π
4
+kπ,K∈Z}(12分)
点评:在三角函数中,我们常用辅助角公式asinα+bcosα=
a2+b2
sin(α+φ),将三角函数的表达式化为正弦型函数的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx).
(1)求证:向量
a
与向量
b
不可能平行;
(2)若f(x)=
a
b
,且x∈[-
π
4
π
4
]时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosx,sinx),
b
=(sinx,cosx),与f(x)=
a
b
要得到函数y=cos2x-sin2x的图象,只需将函数y=f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1-cosx,2sin
x
2
),
b
=(1+cosx,2cos
x
2
)
,设f(x)=2+sinx-
1
4
|
a
-
b
|2

(Ⅰ)求f(x)的表达式;
(Ⅱ)若函数g(x)和函数f(x)的图象关于原点对称,
(ⅰ)求函数g(x)的解析式;
(ⅱ)若函数h(x)=g(x)-λf(x)+1在区间[-
π
2
π
2
]
上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx),设f(x)=
a
b

(1)求函数f(x)的最小正周期;
(2)由y=sinx的图象经过怎样变换得到y=f(x)的图象,试写出变换过程;
(3)当x∈[0,
π
2
]时,求函数f(x)的最大值及最小值.

查看答案和解析>>

同步练习册答案