精英家教网 > 高中数学 > 题目详情

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有个红球个白球的甲箱与装有个红球个白球的乙箱中,各随机摸出个球,若模出的个球都是红球则中奖,否则不中奖.

(1)用球的标号列出所有可能的模出结果;

(2)有人认为:两个箱子中的红球比白球多所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.

【答案】(1)见解析;(2)见解析

【解析】

试题分析:(1)利用列举法列举结果为.2)摸出的个球都是红球的结果为:

种,不中奖概率,故不正确.

试题解析:

1)所有可能摸出的结果是

2)不正确. 理由如下:

由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为:

4种,

所以中奖的概率为,不中奖的概率为,故这种说法不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的对称轴方程;

2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若 分别是三个内角 的对边, ,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知矩形的长为,宽为 边分别在轴、轴的正半轴上, 点与坐标原点重合.将矩形折叠,是点落在线段.

Ⅰ)当点落在中点时,求折痕所在的直线方程.

Ⅱ)若折痕所在直线的斜率为,求折痕所在的直线方程与轴的交点坐标.(答案中可以出现

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,抛物线的方程为,直线的方程为,直线交抛物线 两点,点为线段中点,直线 分别与抛物线切于点

)求:线段的长.

)直线平行于抛物线的对称轴.

)作直线直线,分别交抛物线和两条已知切线 于点

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,随机抽取了个试销售数据,得到第个销售单价(单位:元)与销售(单位:件)的数据资料,算得

(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润-销售收入-成本)

附:回归直线方程中,,其中是样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆)的左、右焦点,点为椭圆上一点,且

(1)求椭圆的标准方程;

(2)若圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件.

(1)画出不等式表示的平面区域,并求该平面区域的面积;

(2)若目标函数的最大值为4,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量 =[ ],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线与圆相切,且与直线垂直,则( )

A. 2 B. 1 C. D.

【答案】A

【解析】因为点P(2,2)满足圆的方程,所以P在圆上,

又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,

所以切点与圆心连线与直线axy+1=0平行,

所以直线axy+1=0的斜率为: .

故选A.

点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.

型】单选题
束】
23

【题目】分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案