(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD, , ,,
为的中点.
(1)求证:MC∥平面PAD;
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.
(1)根据中位线性质,得到EM//AB,且EM= AB. 又因为,且,所以EM//DC,且EM=DC ∴四边形DCME为平行四边形, 则MC∥DE,
(2)(3)
解析试题分析:(1 )如图,取PA的中点E,连接ME,DE,∵M为PB的中点,
∴EM//AB,且EM= AB. 又∵,且,
∴EM//DC,且EM=DC ∴四边形DCME为平行四边形,
则MC∥DE,又平面PAD, 平面PAD
所以MC∥平面PAD
(2)取PC中点N,则MN∥BC,∵PA⊥平面ABCD,∴PA⊥BC ,
又,∴BC⊥平面PAC,
则MN⊥平面PAC所以,为直线MC与平面PAC所成角,
(3)取AB的中点H,连接CH,则由题意得
又PA⊥平面ABCD,所以,则平面PAB.
所以,过H作于G,连接CG,则平面CGH,所以
则为二面角的平面角.
则,
故二面角的平面角的正切值为
考点:本试题考查了线面角和二面角的求解运用。
点评:解决该试题的关键是能利用线面角和二面角的定义,准确的表示角,借助于三角形的知识来求解得到,也可以建立空间直角坐标系来运用空间向量法来得到求解,属于中档题。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在三棱锥中,,,,,, 点,分别在棱上,且,
(Ⅰ)求证:平面PAC
(Ⅱ)当为的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图1,在等腰梯形中,,,,为上一点, ,且.将梯形沿折成直二面角,如图2所示.
(Ⅰ)求证:平面平面;
(Ⅱ)设点关于点的对称点为,点在所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)在直三棱柱(侧棱垂直底面)中,,.
(Ⅰ)若异面直线与所成的角为,求棱柱的高;
(Ⅱ)设是的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,平面⊥平面,是直角三角形,,四边形是直角梯形,其中,,,且,是的中点,分别是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com