精英家教网 > 高中数学 > 题目详情
从4名男生和3名女生中选出3人参加学生座谈会,若这3人中既有男生又有女生,则不同的选法共有(  )
分析:这3人中既有男生又有女生,包括2男1女和1男2女两种情况,分别求出这两种情况下的选法的数量,相加即得所求.
解答:解:这3人中既有男生又有女生,包括2男1女和1男2女两种情况.
若3人中有2男1女,则不同的选法共有 C42C31=18 种,
若3人中有1男2女,则不同的选法共有C41C32=12种,
根据分类计数原理,所有的不同的选法共有 18+12=30 种,
故选D.
点评:本题主要考查组合及两个基本原理,组合数公式的应用,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法种数共有
34
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有
34
34
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有
186
186
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有
34
34
种.

查看答案和解析>>

同步练习册答案