精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;

(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.

【答案】(Ⅰ); (Ⅱ).

【解析】试题分析:(1)利用三种方程的转化方法,求出普通方程,即可求曲线C的普通方程及直线l恒过的定点A的坐标;

(2)在(1)的条件下,若,利用参数的几何意义,求出,即可求直线L的普通方程.

试题解析:

)因为x=ρcosθ,y=ρsinθ,所以C: 直线l恒过定点为.

)把直线l的方程代入曲线C的直角坐标方程中得: .

t的几何意义知 ,因为点A在椭圆内,这个方程必有两个实根,

所以,因为,即

所以,因为,所以

因此,直线l的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上为增函数.

(1)求实数的取值范围;

(2)若函数的图象有三个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为

(1)求抛物线的方程;

(2)若点的横坐标为,直线与抛物线有两个不同的交点 与圆有两个不同的交点,求当时, 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y (nZ)的图像与两坐标轴都无公共点且其图像关于y轴对称n的值,并画出函数图像.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的8道题.规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选;
(Ⅰ)求甲恰有2个题目答对的概率及甲答对题目数的数学期望与方差。
(Ⅱ)求乙答对的题目数X的分布列。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发. 2016年“618”期间,某购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务满意的交易为80次.

(Ⅰ) 根据已知条件完成下面列联表,并回答能有99%的把握认为“网购者对商品满意与服务满意之间有关系”

对服务满意

对服务不满意

合计

对商品满意

80

对商品不满意

合计

200

(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务满意的次数为随机变量,求的分布列和数学期望.

附:(其中为样本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运

会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

80

年龄大于50岁

10

合计

70

100

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的导函数的图象如图所示,给出下列判断:

①函数在区间内单调递增;②函数在区间内单调递减;③函数在区间内单调递增;④当时,函数有极小值;⑤当时,函数有极大值.则上述判断中正确的是(  )

A. ①② B.

C. ②③ D. ③④⑤

查看答案和解析>>

同步练习册答案