精英家教网 > 高中数学 > 题目详情
2.在△ABC中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{BC}$=(-1,3,0),则∠ABC=$\frac{3π}{4}$.

分析 根据平面向量的数量积,求出向量$\overrightarrow{AB}$与$\overrightarrow{BC}$所成的角,从而得出∠ABC的大小.

解答 解:△ABC中,$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{BC}$=(-1,3,0),
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=2×(-1)+4×3+0×0=10,
|$\overrightarrow{AB}$|=$\sqrt{{2}^{2}{+4}^{2}{+0}^{2}}$=2$\sqrt{5}$,
|$\overrightarrow{BC}$|=$\sqrt{{(-1)}^{2}{+3}^{2}{+0}^{2}}$=$\sqrt{10}$;
∴cos<$\overrightarrow{AB}$,$\overrightarrow{BC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{AB}|×|\overrightarrow{BC}|}$=$\frac{10}{2\sqrt{5}×\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴向量$\overrightarrow{AB}$与$\overrightarrow{BC}$所成的角为$\frac{π}{4}$,
∴∠ABC=π-$\frac{π}{4}$=$\frac{3π}{4}$.
故答案为:$\frac{3π}{4}$.

点评 本题考查了利用空间向量求夹角的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(m-1)x2+mx+m-1.
(1)若f(x)为奇函数,求m的值;
(2)若f(x)为偶函数,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=(x-1)0+(2-x)${\;}^{\frac{1}{2}}$的定义域为{x|x<1或1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$-$\frac{b}{{2}^{x}+a}$是R上的奇函数,且f(1)=$\frac{1}{6}$.
(1)求函数f(x)的解析式;
(2)判断f(x)在R上的单调性并用定义证明;
(3)当x∈[1,2]时,f(x)>-x2+2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(sinα-2,-cosα),$\overrightarrow{n}$=(-sinα,cosα),其中α∈R.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α;
(2)若|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{2}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x-3)=lg$\frac{x}{x-6}$.
(1)求函数f(x)的表达式;
(2)判断并证明函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义域为R的函数f(x)对任意的x都有f(2+x)=f(2-x),且其导函数f′(x)满足:$\frac{f′(x)}{2-x}$>0,则当2<a<4时,下列成立的是(  )
A.f(log2a)<f(2)<f(2aB.f(2a)<f(log2a)<f(2)C.f(2a))<f(2)<f(log2a)D.f(log2a)<f(2a)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题中:
①若a+b不是偶数,则a,b不都是奇数;
②抛物线y=$\frac{1}{4}$x2的焦点坐标是($\frac{1}{16}$,0);
③若p∧q为假命题,则p、q均为假命题;
④若椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两焦点为F1、F2,且弦AB过F1点,则△ABF2的周长为20.  
其中正确的命题的序号是①④(填上你认为正确命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x<7},B={x|3<x<10},
(1)求A∪B
(2)(∁RA)∩B.

查看答案和解析>>

同步练习册答案