精英家教网 > 高中数学 > 题目详情
13.已知一个球的表面积和体积相等,则它的半径为3.

分析 设出球的半径,求出球的体积和表面积,利用相等关系求出球的半径即可.

解答 解:设球的半径为r,则球的体积为:$\frac{4}{3}π{r}^{3}$,球的表面积为:4πr2
因为球的体积与其表面积的数值相等,所以$\frac{4}{3}π{r}^{3}$=4πr2
解得r=3
故答案为:3.

点评 本题考查球的体积与表面积等基础知识,考查运算求解能力及方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设全集U是实数集R,M={x|x2>4},N为函数y=ln(4x-3-x2)的定义域,则图中阴影部分所表示的集合是{x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“?x∈R,x>sinx”的否定是?x∈R,x≤sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为等差数列,a1=2,{an}的前n和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)是否存在非零整数λ,使不等式$λ(1-\frac{1}{a_1})(1-\frac{1}{a_2})…(1-\frac{1}{a_n})cos\frac{{{a_{n+1}}π}}{2}<\frac{1}{{\sqrt{{a_n}+1}}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(Ⅲ)各项均为正整数的无穷等差数列{cn},满足c39=a1007,且存在正整数k,使c1,c39,ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程${log_2}({4^x}-5)=2+{log_2}({2^x}-2)$的解x=log23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α的终边经过点P(1,-2),则cosα=$\frac{{\sqrt{5}}}{5}$; tan2α=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为165的样本,已知在高一年级抽取了55人,高二年级抽取了60人,则高中部共有多少学生?并就高三年级写出具体的抽样过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合U={ 1,2,3,4,5,6,7 },A={ 2,4,5,7 },B={ 3,4,5 }则(∁UA)∪(∁UB)=(  )
A.{ 1,6 }B.{ 4,5}C.{ 2,3,4,5,7 }D.{ 1,2,3,6,7 }

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆上$\frac{x^2}{16}+\frac{y^2}{9}=1$上的点P到直线x-y-10=0的距离最小值是$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案