精英家教网 > 高中数学 > 题目详情

【题目】已知函数是减函数.

(1)试确定a的值;

(2)已知数列,求证:.

【答案】(Ⅰ)(Ⅱ)见证明

【解析】

(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出

(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而 ,两边取对数 ,然后再证明恒成立即可,构造函数,通过求导证明即可。

解:(Ⅰ)的定义域为.

是减函数得,对任意的,都有恒成立.

.

,由

∴当时,;当时,

上单调递增,在上单调递减,

时取得最大值.

又∵,∴对任意的恒成立,即的最大值为.

,解得.

(Ⅱ)由是减函数,且可得,当时,

,即.

两边同除以得,,即.

从而

所以 ①.

下面证

.

上单调递增,

上单调递减,

∴当时,恒成立,

上单调递减,

时,

∴当时,.

∴当时,,即②.

综上①②可得,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知动点M与到点N(30)的距离比动点M到直线x=-2的距离大1,记动圆M的轨迹为曲线C.

(1)求曲线C的方程;

(2)若直线l与曲线C相交于AB:两点,且(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校夏令营有3名男同学3名女同学,其年级情况如下表:


一年级

二年级

三年级

男同学

A

B

C

女同学

X

Y

Z

现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)

用表中字母列举出所有可能的结果

为事件选出的2人来自不同年级且恰有1名男同学和1名女同学,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台的底面是正三角形,平面平面.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间,,,的长度均为,其中.

(1)已知函数的定义域为,值域为,写出区间长度的最大值与最小值.

(2)已知函数的定义域为实数集,满足 (的非空真子集).集合, ,求的值域所在区间长度的总和.

(3)定义函数,判断函数在区间上是否有零点,并求不等式解集区间的长度总和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,短轴长是2.

(1)求椭圆C的方程;

(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型工厂招聘到一大批新员工.为了解员工对工作的熟练程度,从中随机抽取100人组成样本,统计他们每天加工的零件数,得到如下数据:

将频率作为概率,解答下列问题:

(1)当时,从全体新员工中抽取2名,求其中恰有1名日加工零件数达到240及以上的概率;

(2)若根据上表得到以下频率分布直方图,估计全体新员工每天加工零件数的平均数为222个,求的值(每组数据以中点值代替);

(3)在(2)的条件下,工厂按工作熟练度将新员工分为三个等级:日加工零件数未达200的员工为C级;达到200但未达280的员工为B级;其他员工为A级.工厂打算将样本中的员工编入三个培训班进行全员培训:A,B,C三个等级的员工分别参加高级、中级、初级培训班,预计培训后高级、中级、初级培训班的员工每人的日加工零件数分别可以增加20,30,50.现从样本中随机抽取1人,其培训后日加工零件数增加量为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点..

1)求证:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案