精英家教网 > 高中数学 > 题目详情

【题目】函数,当时,恒成立,则的最大值是_____.

【答案】

【解析】

先根据恒成立写出有关ab的约束条件,再在aob系中画出可行域,由斜率模型可得

.又,令 t,则1≤t≤4,利用yt[14]上单调递增,即可得出结论.

gm)=(3a2m+ba

由题意当m[01]时,0≤fa≤1可得

0≤g0≤1,

0≤g1≤1,

0≤ba≤1,0≤2a+b2≤1

ab≤1+a①,2≤2a+b≤3 ②.

把(ab)看作点画出可行域,由斜率模型可看作是原点与(ab)连线的斜率,由图可得当(ab)取点A时,原点与(ab)连线的斜率最大,与ba=0重合时原点与(ab)连线的斜率最小.

14

,令 t,则1≤t≤4,

yt[14]上单调递增,

t4时,即a,b时,y有最大值是.

的最大值是

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以双曲线上一点为圆心作圆,该圆与轴相切于的一个焦点,与轴交于两点,若,则双曲线的离心率________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为2,且过点.

1)求椭圆的方程;

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为丰富教职工生活,在元旦期间举办趣味投篮比赛,设置AB两个投篮位置,在A点投中一球得1分,在B点投中一球得2分,规则是:每人按先AB的顺序各投篮一次(计为投篮两次),教师甲在A点和B点投中的概率分别为,且在AB两点投中与否相互独立.

(1)若教师甲投篮两次,求教师甲投篮得分0分的概率

(2)若教师乙与教师甲在AB投中的概率相同,两人按规则投篮两次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),点为椭圆短轴的上端点,为椭圆上异于点的任一点,若点到点距离的最大值仅在点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知.

1)若,判断椭圆是否为“圆椭圆”;

2)若椭圆是“圆椭圆”,求的取值范围;

3)若椭圆是“圆椭圆”,且取最大值,关于原点的对称点,也异于点,直线分别与轴交于两点,试问以线段为直径的圆是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程,并求出曲线公共弦所在直线的极坐标方程;

2)若射线与曲线交于两点,与曲线交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,平面ABCD

1)求证:平面PAD

2)在棱AB上是否存在一点F,使得平面平面PCE?如果存在,求的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案