精英家教网 > 高中数学 > 题目详情
16.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为135°,则E的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\root{4}{2}$

分析 根据△ABM是顶角为135°的等腰三角形,得出|BM|=|AB|=2a,∠MBx=45°,进而求出点M的坐标,再将点M代入双曲线方程即可求出离心率.

解答 解:不妨取点M在第一象限,如右图:
设双曲线的方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),
∵△ABM是顶角为135°的等腰三角形,
∴|BM|=|AB|=2a,∠MBx=45°,
∴点M的坐标为(($\sqrt{2}$+1)a,$\sqrt{2}$a),
又∵点M在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上,
∴将M坐标代入坐标得$\frac{(\sqrt{2}+1)^2a^2}{a^2}$-$\frac{2a^2}{b^2}$=1,
整理上式得,a2=(1+$\sqrt{2}$)b2,而c2=a2+b2=(2+$\sqrt{2}$)b2
∴e2=$\frac{c^2}{a^2}$=$\sqrt{2}$,因此e=$\root{4}{2}$,
故选D.

点评 本题主要考查了双曲线的简单几何性质,灵活运用几何关系是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知f(x)为定义在R上的可导函数,下列命题:
①若y=f(x)是奇函数,且在(0,+∞)上单调递增,则当x<0时,f(x)<0;
②若对任意的x>0,都有f(x)<f(0),则函数y=f(x)在[0,+∞)上一定是减函数;
③“函数y=|f(x)|的图象关于y轴对称”是“y=f(x)为奇函数”的必要不充分条件;
④若存在xi∈[a,b](1≤i≤n;n≥2;i,n∈N+),当x1<x2<x3<…<xn时,有f(x1)<f(x2)<f(x3)<…<f(xn),则函数y=f(x)在区间[a,b]上是单调递增;
⑤若?x0∈(a,b)使f′(x0)=0,且f′(a)f′(b)<0,则x=x0为函数y=f(x)的一个极值点.
其中正确命题的序号为①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=ax-1+logax在区间[1,2]上的最大值和最小值之和为a,则实数a为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(a,x+f(x)),$\overrightarrow{n}$=(1,ln(1+ex)-x),(a∈R),$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求函数y=f(x)的单调区间;
(2)若△ABC的三个顶点在函数y=f(x)的图象上,从左到右点A,B,C的横坐标依次是x1,x2,x3,且x1,x2,x3成等差数列,当a>0时,△ABC能否构成等腰三角形?若能,求出△ABC的面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ=(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=cos2x-sin2x+sin2x+1的最小正周期是π,振幅是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x<2,则$\sqrt{{x}^{2}-4x+4}$-|3-x|的值是.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在△ABC中,向量$\overrightarrow{m}$=(-cosA,sinA),$\overrightarrow{n}$=(cosC,sinC),$\overrightarrow{m}$•$\overrightarrow{n}$=cos2B,若AC=6,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=-18,则AB+AC等于(  )
A.3$\sqrt{2}$B.3$\sqrt{6}$C.12D.6$\sqrt{2}$

查看答案和解析>>

同步练习册答案