解答:解:(1)当a=-3时,
f(x)=x3-x2-3x+3,
∴f'(x)=x
2-2x-3=(x-3)(x+1).令f'(x)=0,得 x
1=-1,x
2=3.
当x<-1时,f′(x)>0,则f(x)在(-∞,-1)上单调递增;
当-1<x<3时,f′(x)<0,则f(x)在(-1,3)上单调递减;
当x>3时,f′(x)>0,f(x)在(3,+∞)上单调递增;
∴当x=-1时,f(x)取得极大值为:f(-1)=
--1+3+3=;
当x=3时,f(x)取得极小值为:
f(3)=×27-9-9+3=-6.
(2)∵
g(x)=x3+ax2+(a-2)x,g′(x)=x2+2ax+a-2问题转化为方程g′(x)=0在区间(-1,1)内有解,
∴g′(-1)•g′(1)<0或
| △=4a2-4(a-2)>0 | -1<-a<1 | g′(1)=3a-1>0 | g′(-1)=-a-1>0 |
| |
,
解得a<-1或a>
,
故a的取值范围为:(-∞,-1)∪(
,+∞).
(3)∵f'(x)=x
2-2x+a,∴△=4-4a=4(1-a).
①若a≥1,则△≤0,∴f'(x)≥0在R上恒成立,
∴f(x)在R上单调递增.∵f(0)=-a<0,f(3)=2a>0,
∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点.
②若a<1,则△>0,
∴f'(x)=0有两个不相等的实数根,不妨设为x
1,x
2,(x
1<x
2).
∴x
1+x
2=2,x
1x
2=a.
当x变化时,f′(x),f(x)的取值情况如下表:
x |
(-∞,x1) |
x1 |
(x1,x2) |
x2 |
(x2,+∞) |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
↗ |
极大值 |
↘ |
极小值 |
↗ |
∵
-2x1+a=0,
∴
a=-+2x1.∴
f(x1)=-+ax1-a=
-+ax1+-2x1=
+(a-2)x1=
x1[+3(a-2)],
同理f(x
2)=
x2[+3(a-2)].
∴
f(x1)•f(x2)=[+3(a-2)]•[+3(a-2)]=
(x1x2)[(x1x2)2+3(a-2)(+)+9(a-2)2]=
a{a2+3(a-2)[(x1+x2)2-2x1x2]+9(a-2)2}=
a(a2-3a+3).
令f(x
1)•f(x
2)>0,解得a>0.
而当0<a<1时,f(0)=-a<0,f(3)=2a>0,
故当0<a<1时,函数f(x)的图象与x轴有且只有一个交点.
综上所述,a的取值范围是(0,+∞).