精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB∥CD,∠BCD= ,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

【答案】
(1)证明:在梯形ABCD中,∵AB∥CD,设AD=CD=BC=1,

又∵ ,∴AB=2,

∴AC2=AB2+BC2﹣2ABBCcos60°=3.

∴AB2=AC2+BC2.则BC⊥AC.

∵CF⊥平面ABCD,AC平面ABCD,

∴AC⊥CF,而CF∩BC=C,

∴AC⊥平面BCF.

∵EF∥AC,

∴EF⊥平面BCF;


(2)解:分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,

设AD=CD=BC=CF=1,令FM=λ( ),

则C(0,0,0),A( ,0,0),B(0,1,0),M(λ,0,1),

=(﹣ ,1,0), =(λ,﹣1,1),

=(x,y,z)为平面MAB的一个法向量,

,取x=1,则 =(1, ),

=(1,0,0)是平面FCB的一个法向量,

∴cos< >= =

,∴当λ=0时,cosθ有最小值为

∴点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为


【解析】(1)在梯形ABCD中,设AD=CD=BC=1,由题意求得AB=2,再由余弦定理求得AC2=3,满足AB2=AC2+BC2,得则BC⊥AC.再由CF⊥平面ABCD得AC⊥CF,由线面垂直的判定可得AC⊥平面BCF.进一步得到EF⊥平面BCF;(2)分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系,设AD=CD=BC=CF=1,令FM=λ( ),得到C,A,B,M的坐标,求出平面MAB的一个法向量,由题意可得平面FCB的一个法向量,求出两法向量所成角的余弦值,可得当λ=0时,cosθ有最小值为 ,此时点M与点F重合.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足:bn=an+1﹣an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn1=bn(n≥2),且b1=1,b2=2. (i)记cn=a6n1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{ }中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图多面体ABCD中,面ABCD为正方形,棱长AB=2,AE=3,DE= ,二面角E﹣AD﹣C的余弦值为 ,且EF∥BD.
(1)证明:面ABCD⊥面EDC;
(2)若直线AF与平面ABCD所成角的正弦值为 ,求二面角AF﹣E﹣DC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 过点P( ,1)且离心率为 ,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(﹣4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3 ,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)满足2x2f(x)+x3f'(x)=ex , f(2)= ,则x∈[2,+∞)时,f(x)的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人. 某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)

年龄

频数

频率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合计

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?

50岁以上

50岁以下

合计

男生

女生

合计


(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列 (表二)

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:k2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是R上的增函数,则a的取值范围是(
A.﹣3≤a<0
B.﹣3≤a≤﹣2
C.a≤﹣2
D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π
(Ⅰ)求m值和f(x)的单调递增区间;
(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2, ,求 的取值范围.

查看答案和解析>>

同步练习册答案