【题目】已知函数,斜率为的直线与相切于点.
(Ⅰ)求的单调区间;
(Ⅱ)当实数时,讨论的极值点.
(Ⅲ)证明:.
【答案】(1)在上单调递增,在上单调递减,(2) 当时,的极小值点为=1,极大值点;当时,无极值点;当时,的极大值点为=1,极小值点;(3)见解析.
【解析】
(1)(1)把f(x)代入h(x),对f(x)进行求导,利用导数研究h(x)的单调区间,注意函数的定义域;(2)已知实数0<a<1,对g(x)进行求导,令g′(x)=0,得出极值点,这时方程g′(x)=0的两个根大小不一样,需要进行讨论,然后再确定极大值和极小值点;(3)结合(1)通过讨论x的范围,结合函数的单调性证明即可.
(Ⅰ)由题意知:
,
,
解得:;解得:
所以在上单调递增,在上单调递减
(Ⅱ)=
,
,
由g′(x)=0得x1=﹣1,x2=1,
1、若0<﹣1<1,a>0即<a<1,0<x1<x2,
此时g(x)的极小值为x=1,极大值点x=﹣1,
2、若﹣1=1,a>0,即a=,x1=x2=1,则g′(x)≥0,g(x)在(0,+∞)上为单调增区间,无极值点,
3、若﹣1>1,a>0即0<a<,x1>x2=1,
此时g(x)的极大值点为x=1,极小值点x=﹣1,
综上:当<a<1时,g(x)的极小值点为x=1,极大值点x=﹣1;
当a=时,g(x)无极值点为x=1,极小值点x=;
当0<a时,g(x)的极大值点为x=1,极小值点x=﹣1;
(Ⅲ)由(Ⅰ)知:
当时,
,即
当时,
,
当时
,
所以
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,过焦点F的直线交抛物线于A,B两点,设AB的中点为M,A,B,M在准线上的射影分别为C,D,N.
(1)求直线FN与直线AB的夹角的大小;
(2)求证:点B,O,C三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且与交于,两点,已知点的极坐标为.
(1)求曲线的普通方程和直线的直角坐标方程,并求的值;
(2)若矩形内接于曲线且四边与坐标轴平行,求其周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.
(1)证明:点在轴的右侧;
(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,,…,为1,2,…,10的一个排列,则满足对任意正整数m,n,且,都有成立的不同排列的个数为( )
A.512B.256C.255D.64
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点. 设过点的动直线与相交于两点.
(1)求的方程;
(2)是否存在这样的直线,使得的面积为,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com