【题目】如图,四棱锥中,,,为中点.
(1)证明:平面;
(2)若平面,是边长为2的正三角形,求点到平面的距离.
【答案】(1)见解析.(2).
【解析】分析:第一问首先在平面内寻找的平行线,这个任务借助中位线,从而取中点,即为所求,之后应用线面平行的判定定理证得结果;第二问利用线面平行将点到平面的距离转化为求点到平面的距离,之后用等级法,借助于三棱锥的体积和三棱锥的体积相等求得对应的高,即点到面的距离.
详解:(1)证明:取的中点,连结
∵为的中点,∴,且
又∵,且
∴,且,故四边形为平行四边形
∴
又平面,平面,
∴平面.
(2)由(1)得平面
故点到平面的距离等于点到平面的距离
取的中点,连结
∵平面,平面,
∴平面平面
又是边长为2的正三角形
∴,,且
∵平面平面
∴平面,
∵四边形是直角梯形,
∴
∵,,,
∴,
∴
记点到平面的距离为,
∵三棱锥的体积
∴.
∴点到平面的距离为.
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,当时,.
(Ⅰ)若函数过点,求此时函数的解析式;
(Ⅱ)若函数只有一个零点,求实数的值;
(Ⅲ)设,若对任意实数,函数在上的最大值与最小值的差不大于1,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的班车在8:00准时发车,小田与小方均在7:40至8:00之间到达发车点乘坐班车,且到达发车点的时刻是随机的,则小田比小方至少早5分钟到达发车点的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线的方程为.
(1)若在两坐标轴上的截距相等,求的方程;
(2)若不经过第二象限,求实数的取值范围;
(3)若与轴正半轴的交点为,与轴负半轴的交点为,求(为坐标原点)面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com