精英家教网 > 高中数学 > 题目详情
=(2cosx,1),=(cosx,sin2x),f(x)=·,x∈R,
(1)若f(x)=0且x∈[0,],求x的值;
(2)若函数g(x)=cos(ωx-)+k(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(,2),求函数g(x)的值域及单调递增区间。

解:(1)







(2)由(1)知T=π,


∴k=1,

∴g(x)的值域为[0,2],单调递增区间为(k∈Z)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(2cosx,1)
b
=(cosx,
3
sin2x)
,若存在x∈[0,
π
2
]
,使得不等式
a
b
-k≤0
成立,则实数k的最小值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[0,
π
2
],求x的值;
(2)若函数g(x)=cos(ωx-
π
3
)+k
(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•淄博二模)设
a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[-
π
3
π
3
],求x的值.
(2)若函数g(x)=cos(ωx-
π
3
)+k(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设向量
a
=(2cosx,1)
b
=(cosx,
3
sin2x)
,若存在x∈[0,
π
2
]
,使得不等式
a
b
-k≤0
成立,则实数k的最小值是______.

查看答案和解析>>

科目:高中数学 来源:淄博二模 题型:解答题

a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[-
π
3
π
3
],求x的值.
(2)若函数g(x)=cos(ωx-
π
3
)+k(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

同步练习册答案