精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.

【答案】
(1)解:∵A=2B, ,b=3,

∴a=6cosB,

∴a=6

∴a=2


(2)解:∵a=6cosB,

∴cosB=

∴sinB=

∴sinA=sin2B= ,cosA=cos2B=2cos2B﹣1=﹣

∴sin(A+ )= (sinA+cosA)=


【解析】(1)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(2)求出sinA,cosA,即可求sin(A+ )的值.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:,以及对正弦定理的定义的理解,了解正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过市场调查,某种商品在销售中有如下关系:x(1≤x≤30,x∈N+)天的销售价格(单位:/)f(x)=x天的销售量(单位:)g(x)=a-x(a为常数),且在第20天该商品的销售收入为1 200(销售收入=销售价格×销售量).

(1)a的值,并求第15天该商品的销售收入;

(2)求在这30天中,该商品日销售收入y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学所需时间的范围是,样本数据分组为

(1)求直方图中x的值;

(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,若该学校有600名新生,请估计新生中有多少名学生可以申请住宿;

(3)由频率分布直方图估计该校新生上学所需时间的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数f(x)=sin(2x+ )的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个不共线的非零向量.

1)设,那么当实数t为何值时,ABC三点共线;

2)若的夹角为60°,那么实数x为何值时的值最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且.

(1)求证:

(2)若为线段的中点,求证:平面

(3)求多面体的体积.

查看答案和解析>>

同步练习册答案