【题目】设抛物线y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若 ,则弦长|AB|等于( )
A.2
B.4
C.6
D.8
【答案】C
【解析】解:∵抛物线方程为y2=4x,
∴2p=4,p=2,可得抛物线的焦点为F(1,0),准线为l:x=﹣1,
设A(x1 , y1),B(x2 , y2),直线AB的方程为y=k(x﹣1),
由 消去y,得k2x2﹣(2k2+4)x+k2=0,
∴x1+x2= ,x1x2=1,
∵过AB的中点M作准线的垂线与抛物线交于点P,
∴设P的坐标为(x0 , y0),可得y0= (y1+y2),
∵y1=k(x1﹣1),y2=k(x2﹣1),
∴y1+y2=k(x1+x2)﹣2k=k ﹣2k= ,
得到y0= = ,所以x0= = ,可得P( , ).
∵ ,∴ = ,解之得k2=2,
因此x1+x2= =4,根据抛物线的定义可得|AB|=x1+x2+p=4+2=6.
故选:C
科目:高中数学 来源: 题型:
【题目】某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为( )
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求的普通方程和的倾斜角;
(2)设点和交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是梯形,四边形是矩形,且平面平面, , , , 是线段上的动点.
(1)试确定点的位置,使平面,并说明理由;
(2)在(1)的条件下,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com