精英家教网 > 高中数学 > 题目详情

【题目】如图所示,△ACD是边长为1的等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于点E.
(1)求BD2的值;
(2)求线段AE的长.

【答案】
(1)解:在△BCD中,CD=CB=1,∠DCB=150°,∠CDB=∠CBD=15°

由余弦定理可得:BD2=1+1﹣2×1×1×cos150°=2+


(2)解:在△ADE中,AD=1,∠DAE=60°,∠ADE=45°,则∠AED=75°

由正弦定理可得:

∴AE=


【解析】(1)在△BCD中,CD=CB=1,∠DCB=150°,∠CDB=∠CBD=15°,利用余弦定理可求BD2;(2)在△ADE中,AD=1,∠DAE=60°,∠ADE=45°,则∠AED=75°,由正弦定理可得AE的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:

(Ⅰ)若从年龄在的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;

(Ⅱ)若从年龄在的被调查者中各随机选取2人进行调查,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 点(an , Sn)(n∈N*)都在函数f(x)= 的图象上.
(1)求数列{an}的通项公式;
(2)若bn=an3n , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,E是DD1的中点.

(1)求证:BD1∥平面AEC.
(2)求异面直线BC1与AC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1且an+1=an+2n+1,设数列{bn}满足bn=an﹣1,对任意正整数n不等式 均成立,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为读书迷,低于60分钟的学生称为非读书迷

)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为读书迷与性别有关?

)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中读书迷的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:
(1)AC⊥BC1
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过原点,且在处取得极值,直线与曲线在原点处的切线互相垂直.

求函数的解析式;

若对任意实数的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(l)求的单调区间;

(2)若函数在区间内存在唯一的极值点,求的值.

查看答案和解析>>

同步练习册答案