精英家教网 > 高中数学 > 题目详情

【题目】下列判断正确的是( )

A.”是“”的充分不必要条件

B.函数的最小值为2

C.时,命题“若,则”为真命题

D.命题“”的否定是“

【答案】C

【解析】

求解对数不等式之后即可考查选项A是否正确,利用换元法可确定选项B中函数的最小值,利用原命题与逆否命题的关系可判断C选项是否正确,否定全称命题即可确定选项D是否正确.

逐一考查所给命题的真假:

对于选项A:由可得,即

的必要不充分条件,则题中的命题为假命题;

对于选项B:令

由对勾函数的性质可知函数单调递增,其最小值为,则题中的命题为假命题;

对于选项C:考查其逆否命题:,则

很明显该命题为真命题,则题中的命题为真命题;

对于选项D:命题的否定是,则题中的命题为假命题;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱的侧面是圆柱的轴截面,C是圆柱底面圆周上不与AB重合的一个点。

(1)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线AB的所成角的大小(结果用反三角函数值表示);

(2)当点C是弧AB的中点时,求四棱锥体积与圆柱体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数设为.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个极值点,试用表示

(Ⅲ)在(Ⅱ)的条件下,若的极值点恰为的零点,试求这两个函数的所有极值之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程和直线的普通方程;

2)若直线与曲线交于两点,设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为D的函数y=fx,如果存在区间[m,n]D,同时满足:

①fx[m,n]内是单调函数;

②当定义域是[m,n]时,fx的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.

1证明:[0,1]是函数y=fx=x2的一个“和谐区间”.

2求证:函数不存在“和谐区间”.

3已知:函数aR,a0有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(m,n为常数),在处的切线方程为

(Ⅰ)求的解析式并写出定义域;

(Ⅱ)若,使得对上恒有成立,求实数的取值范围;

(Ⅲ)若有两个不同的零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,分别是的中点,将三角形沿折起,则下列说法正确的是______________.

1)不论折至何位置(不在平面内),都有平面

2)不论折至何位置,都有

3)不论折至何位置(不在平面内),都有

4)在折起过程中,一定存在某个位置,使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若数列满足,存在实数,对任意,都有,则称数列有上界,是数列的一个上界,已知定理:单调递增有上界的数列收敛(即极限存在).

(1)数列是否存在上界?若存在,试求其所有上界中的最小值;若不存在,请说明理由;

(2)若非负数列满足),求证:1是非负数列的一个上界,且数列的极限存在,并求其极限;

(3)若正项递增数列无上界,证明:存在,当时,恒有.

查看答案和解析>>

同步练习册答案