精英家教网 > 高中数学 > 题目详情

【题目】点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4,F为拋物线的焦点,点N(l,l),当点P在直线l:x﹣y=2上运动时, 的最小值为(
A.
B.
C.
D.

【答案】B
【解析】解:∵点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4, ∴2+ =4,∴a= ,∴拋物线C:x2=8y,
直线l:x﹣y=2与x轴交于A(2,0),则FA⊥l.
设AP=t,则AN= ,AF=2 ,PN= ,PF=
﹣1=m(m≥ ﹣1),则 =
∴m= ﹣1,即t=0时, 的最小值为
故选:B.
先求出抛物线的方程,设AP=t,则AN= ,AF=2 ,PN= ,PF= ,再表示 ,利用换元法,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】D为△ABC的BC边上一点, ,过D点的直线分别交直线AB、AC于E、F,若 ,其中λ>0,μ>0,则 + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(﹣x)成立,则称此函数具有“P(a)性质”;
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P(a)性质”,请说明理由;
(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2 , t∈R,求y=f(x)在[0,1]上的最大值;
(3)设函数y=g(x)具有“P(±1)性质”,且当﹣ ≤x≤ 时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函数f(x)的图象;
(2)若不等式 ≤f(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列命题中,正确命题的个数为(  )

两个复数不能比较大小;

,若,则

是纯虚数,则实数

是虚数的一个充要条件是

是两个相等的实数,则是纯虚数;

的一个充要条件是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在区间(0,+∞)内的单调函数,且对x∈(0,∞),都有f[f(x)﹣lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)﹣f′(x)的零点个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(Ⅰ)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共14分)

如图,在四棱锥中, 平面,底面是菱形, .

()求证: 平面

)若所成角的余弦值;

)当平面与平面垂直时,求的长.

查看答案和解析>>

同步练习册答案