已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱 长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图所示,四棱锥中,底面为正方形,平面,,,,分别为、、的中点.
(1)求证:;
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为,
(1)设∠CA1O =(rad),将y表示成的函数关系式;
(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
如图, 在直三棱柱中,,,.
(1)求证:;
(2)问:是否在线段上存在一点,使得平面?
若存在,请证明;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,,,点为的中点,为中点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,
(Ⅰ)求证:平面;
(Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com