【题目】给出下列4个求导运算,其中正确的个数是( ) ①(x+ )′=1+ ;
②(log2x)′= ;
③(3x)′=3xlog3e;
④(x2cos2x)′=﹣2xsin2x.
A.1
B.2
C.3
D.4
科目:高中数学 来源: 题型:
【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).
(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);
(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:
(1)AC⊥BD;
(2)△ACD是等边三角形
(3)AB与平面BCD所成的角为60°;
(4)AB与CD所成的角为60°.
则正确结论的序号为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义. 2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查. 某城市调查体统计结果如下表:
性别 中国政府是否 需要在钓鱼岛和其他争议 问题上持续对日强硬 | 男 | 女 |
需要 | 50 | 250 |
不需要 | 100 | 150 |
(1) 试估计这七个代表性城市的普通民众中,认为 “中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众所占比例;
(2) 能否有以上的把握认为这七个代表性城市的普通民众的民意与性别有关?
(3) 从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬” 的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为,求的分布列.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=1﹣nan(n∈N*)
(1)计算a1 , a2 , a3 , a4;
(2)猜想an的表达式,并用数学归纳法证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足a1=1,an+1= (n∈N*).
(1)计算a2 , a3 , a4 , 并由此猜想通项公式an;
(2)用数学归纳法证明(1)中的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆锥如图①所示,图②是它的正(主)视图.已知圆的直径为, 是圆周上异于的一点, 为的中点.
(I)求该圆锥的侧面积S;
(II)求证:平面⊥平面;
(III)若∠CAB=60°,在三棱锥中,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等比数列{an}中,an>0(n∈N*),a1a3=4,且a3+1是a2和a4的等差中项,
若bn=log2an+1.
(1)求数列{bn}的通项公式;
(2)若数列{cn}满足cn=an+1+,求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0 ,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=( )
A.5太贝克
B.75In2太贝克
C.150In2太贝克
D.150太贝克
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com