精英家教网 > 高中数学 > 题目详情

设函数
(1)设,,证明:在区间内存在唯一的零点;
(2) 设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设内的零点,判断数列的增减性.

(1) 见解析;(2);(3)见解析.

解析试题分析:(1) 先根据零点存在性定理判断在内存在零点,在利用导数说明函数在上是单调递增的,从而说明在区间内存在唯一的零点;(2)此问可用两种解法:第一种,当时,,根据题意判断出上最大值与最小值之差,据此分类讨论如下:(ⅰ)当;(ⅱ)当;(ⅲ)当,综上可知,;第二种,用表示中的较大者,直接代入计算即可;(3)先设出零点,然后根据上是递增的得出结论.
试题解析:(1),时, 
,∴内存在零点. 又当时, ,∴ 上是单调递增的,所以内存在唯一零点.
(2)当时, ,对任意都有等价于上最大值与最小值之差,据此分类讨论如下:(ⅰ)当,即时, ,与题设矛盾
(ⅱ)当,即时, 恒成立
(ⅲ)当,即时, 恒成立.
综上可知, 
注:(ⅱ)(ⅲ)也可合并证明如下:
表示中的较大者.当,即时,
  
 恒成立 .
(3)证法一 设内的唯一零点 
,, 
于是有 
又由(1)知上是递增的,故, 所以,数列是递增数列.
证法二 设内的唯一零点
 的零点内,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|

⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)满足①;②
(1)求的解析式;
(2)若对任意实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义域为的函数,如果存在区间,同时满足:
内是单调函数;②当定义域是值域也是,则称是函数
的“好区间”.
(1)设(其中),判断是否存在“好区间”,并
说明理由;
(2)已知函数有“好区间”,当变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)在区间上画出函数的图象 ;
(2)设集合. 试判断集合之间
的关系,并给出证明 ;
(3)当时,求证:在区间上,的图象位于函数图象的上方.
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足 在上恒成立.
(1)求的值;
(2)若,解不等式
(3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(1)>0.
求证:a>0,且—2<<—1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),且在点处的切线平行于轴.
(1)求实数的值;
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案