精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值      (2)求f(2)的取值范围

(1) b=0(2)

解析试题分析:(1)由,得:,根据题设可判定,从而解得
(2)由(1)知:,由,所以,
因为函数在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点,所以的零点,得到函数解析式所剩唯一参数的取值范围,进而可求的取值范围.
试题解析:
(1)∵f(x)=-x3+ax2+bx+c,
∴f ′(x)=-3x2+2ax+b.     3分
∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,
∴当x=0时,f(x)取到极小值,即f ′(0)=0,
∴b=0.      6分
(2)由(1)知,f(x)=-x3+ax2+c,
∵1是函数f(x)的一个零点,即f(1)=0,∴c=1-a.
∵f′(x)=-3x2+2ax=0的两个根分别为x1=0,x2.     9分
又∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,且函数f(x)在R上有三个零点,
应是f(x)的一个极大值点,因此应有x2>1,即a>.
∴f(2)=-8+4a+(1-a)=3a-7>.
故f(2)的取值范围为.     13分
考点:导数在研究函数性质中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设定义在(0,+∞)上的函数f(x)=ax++b(a>0).
(1)求f(x)的最小值;
(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax2-2xa)·ex.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=-a-2,h(x)=x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=,其中a为正实数.
(1)当a=时,求f(x)的极值点.
(2)若f(x)为[,]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题P:函数在区间[-1,1]上单调递减;
命题q:函数的定义域为R.若命题p或q为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2 (x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式maf(x0)<0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案