精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(
A.30°
B.60°
C.45°
D.90°

【答案】B
【解析】解:根据条件知,P点在底面ABCD的射影为O, 连接AC,BD,PO,则OB,OC,OP三直线两两垂直,
从而分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系:

设棱长为2,则:O(0,0,0),C(0, ,0),
PP(0,0, ),E(0,
A(0,﹣ ,0),B( ,0,0),D(﹣ ,0,0)


∴OE与PD所成角为60°.故选:B.
可连接BD,AC,OP,由已知条件便知这三直线两两垂直,从而可分别以这三直线为x,y,z轴,建立空间直角坐标系,可设棱长为2,从而可求出图形中一些点的坐标,据向量夹角的余弦公式便可求出

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上. (Ⅰ)当点M,N分别是边AB,AD的中点时,求∠MCN的余弦值;
(Ⅱ)由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为(
A.2
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= . (Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)判断函数f(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中点.
(Ⅰ)在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明l⊥CE;
(Ⅱ)设(Ⅰ)中所作直线l与CE确定的平面为α,求点C1到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),则函数y=f2017(x)的图像与曲线 的交点坐标为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=x2﹣2,f(x)= ,则f(x)的值域是(
A.
B.[0,+∞)??
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,则输出的a值是(
A.2
B.﹣
C.﹣
D.﹣2

查看答案和解析>>

同步练习册答案