已知函数(均为正常数),设函数在处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.
(1);(2).
解析试题分析:本题主要考查导数的应用、不等式、三角函数等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力,考查函数思想、转化思想等数学思想方法.第一问,对求导,因为在有极值,所以是的根,列出表达式,求出,不等式恒成立等价于恒成立,所以下面的主要任务是求的最大值,对求导,利用三角公式化简,求的最值,判断的正负,从而判断的单调性,求出最大值;第二问,由单调递增,所以解出的取值范围,由已知在上单调递增,所以得出,利用子集关系列出不等式组,解出.
试题解析:∵,∴,
由题意,得,,解得. 2分
(1)不等式等价于对于一切恒成立. 4分
记
5分
∵,∴,∴,∴,
∴,从而在上是减函数.
∴,于是,故的取值范围是. 6分
(2),由,得,即
. 7分
∵函数在区间上单调递增,
∴,
则有,, 9分
即,,
∴只有时,适合题意,故的取值范围为. 12分
考点:1.导数的运算;2.两角和的正弦公式;3.三角函数的最值;4.恒成立问题;5.利用导数判断函数的单调性.
科目:高中数学 来源: 题型:解答题
设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若在上无最小值,且在上是单调增函数,求a的取值范
围;并由此判断曲线与曲线在交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数在上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com