精英家教网 > 高中数学 > 题目详情

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

(1);(2).

解析试题分析:本题主要考查导数的应用、不等式、三角函数等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力,考查函数思想、转化思想等数学思想方法.第一问,对求导,因为有极值,所以的根,列出表达式,求出,不等式恒成立等价于恒成立,所以下面的主要任务是求的最大值,对求导,利用三角公式化简,求的最值,判断的正负,从而判断的单调性,求出最大值;第二问,由单调递增,所以解出的取值范围,由已知上单调递增,所以得出,利用子集关系列出不等式组,解出.
试题解析:∵,∴
由题意,得,解得.     2分
(1)不等式等价于对于一切恒成立.      4分

     5分
,∴,∴,∴
,从而上是减函数.
,于是,故的取值范围是.     6分
(2),由,得,即
.     7分
∵函数在区间上单调递增,

则有,     9分

∴只有时,适合题意,故的取值范围为.     12分
考点:1.导数的运算;2.两角和的正弦公式;3.三角函数的最值;4.恒成立问题;5.利用导数判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)证明:都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线与圆相切,求的值;
(2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若,求的单调区间;
(Ⅱ) 若对一切恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案