【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元,经试销调查,发现销售量(件)与销售单价(元)可近似看成一次函数(如图).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的利润(利润=销售总价-成本总价)为元。试用销售单价表示利润,并求销售单价定为多少时,该公司可获得最大利润,最大利润是多少?此时的销售量是多少?
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数满足对于任意实数,都有,且当时,,.
(1)判断的奇偶性并证明;
(2)判断的单调性,并求当时,的最大值及最小值;
(3)解关于的不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018安徽江南十校高三3月联考】线段为圆: 的一条直径,其端点, 在抛物线: 上,且, 两点到抛物线焦点的距离之和为.
(I)求直径所在的直线方程;
(II)过点的直线交抛物线于, 两点,抛物线在, 处的切线相交于点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求的分布列;
(Ⅱ)若要求,确定的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.
(Ⅰ)求曲线的直角坐标方程与直线的参数方程;
(Ⅱ)设直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商计划销售一款新型的电子产品,经市场调研发现以下规律:当每台电子产品的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过25,则q(x)= ;若x大于或等于225,则销售量为零;当25≤x≤225时,q(x)=a-b(a,b为实常数).
(1) 求函数q(x)的表达式;
(2) 当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全国糖酒商品交易会将在四川举办.展馆附近一家川菜特色餐厅为了研究参会人数与本店所需原材料数量的关系,在交易会前查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:
举办次数 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
参会人数(万人) | 11 | 9 | 8 | 10 | 12 |
原材料(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)请根据所给五组数据,求出关于的线性回归方程;
(Ⅱ)若该店现有原材料12袋,据悉本次交易会大约有13万人参加,为了保证原材料能够满足需要,则该店应至少再补充原材料多少袋?
(参考公式:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个文艺比赛中,12名专业人士和12名观众代表各组成一个评委小组,给参赛选手打分,下面是两组评委对同一名选手的打分:
小组A 42 45 48 46 52 47 49 55 42 51 47 45
小组B 55 36 70 66 75 49 46 68 42 62 58 47
(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值.
(2)你能据此判断小组A和小组B中哪一个更像是由专业人土组成的吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com