精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).

(1)求直线l1的表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1 , l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.

【答案】
(1)

解:∵点B在直线l2上,

∴4=2m,

∴m=2,点B(2,4)

设直线l1的表达式为y=kx+b,

由题意 ,解得

∴直线l1的表达式为y= x+3.


(2)

解:与图象可知n<2.


【解析】不同考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.
(1)先求出点B坐标,再利用待定系数法即可解决问题;
(2)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视. 为此贵阳市建立了公共自行车服务系统,市民凭本人二代身份证到自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20积分,当积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:

①租用时间不超过1小时,免费;

②租用时间为1小时以上且不超过2小时,扣1分;

③租用时间为2小时以上且不超过3小时,扣2分;

④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).

甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.3.

(1)求甲、乙两人所扣积分相同的概率;

(2)设甲、乙两人所扣积分之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

10

0.25

25

2

0.05

合计

1

(1)求出表中及图中的值;

(2)试估计他们参加社区服务的平均次数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】毕节市正实施“五城同创”计划。为搞好卫生维护工作,政府招聘了200名市民志愿者,按年龄情况进行统计的频率分布表和频率分布直方图如下:

分组(岁)

频数

频率

[30,35)

20

0.1

[35,40)

20

0.1

[40,45)

0.2

[45,50)

[50,55]

40

0.2

合计

200

1

(1)频率分布表中的①②③位置应填什么数?补全频率分布直方图;

(2)根据频率分布直方图估计这200名志愿者的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且.直线轴、轴分别交于两点.设直线的斜率分别为,证明存在常数使得,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左焦点为,过点F做x轴的垂线交椭圆于A,B两点,且

(1)求椭圆C的标准方程:

(2)若M,N为椭圆上异于点A的两点,且直线的倾斜角互补,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知R,命题:对任意,不等式恒成立;命题:存在,使得成立.

(1)若为真命题,求的取值范围;

(2)若为假, 为真,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图表示的算法功能是(  )

A. 计算小于100的奇数的连乘积

B. 计算从1开始的连续奇数的连乘积

C. 1开始的连续奇数的连乘积当乘积大于或等于100计算奇数的个数

D. 计算1×3×5×…×n100时的最小的n的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考天津文数】某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:

现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y计划表示生产甲、乙两种肥料的车皮数.

()用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;

()问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.

查看答案和解析>>

同步练习册答案