精英家教网 > 高中数学 > 题目详情
14.设连续函数f(x)的定义域为R,已知,若函数f(x)无零点,则f(x)>0或f(x)<0恒成立.
(1)用反证法证明:“若存在实数x0,使得f(f(x0))=x0,则至少存在一个实数a,使得f(a)=a”;
(2)若f(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2,有且仅有一个实数x0,使得f(f(x0))=x0,求实数m的取值范围.

分析 (1)设不存在实数a,使得f(a)=a,构造函数F(x)=f(x)-x,则F(x)无零点,F(x)>0或F(x)<0恒成立,结合条件,引出矛盾,即可得出结论;
(2)转化为ex-$\frac{1}{{e}^{x}}$+x2-2cosx-2≠(m+1)x,构造函数,利用导数,即可得出结论.

解答 (1)证明:设不存在实数a,使得f(a)=a,构造函数F(x)=f(x)-x,则F(x)无零点,
∴F(x)>0或F(x)<0恒成立.
不妨设F(x)>0恒成立,则f(x)>x恒成立,
∴f(f(x))>f(x)>x恒成立,
∵存在实数x0,使得f(f(x0))=x0
∴x0=f(f(x0))>f(x0)>x0,矛盾,
故假设不成立,
∴至少存在一个实数a,使得f(a)=a”;
(2)解:由(1)可知,存在一个实数a,使得f(a)=a
显然f(0)=0,则x≠0,F(x)无零点,
即ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2≠x(x≠0)
∴ex-$\frac{1}{{e}^{x}}$+x2-2cosx-2≠(m+1)x,
设g(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-2,则x>0,g′(x)=ex-$\frac{1}{{e}^{x}}$+2(x+sinx)≥2,
x<0,g′(x)=ex-$\frac{1}{{e}^{x}}$+2(x+sinx)>2,
∴m+1≤2,∴m≤1.

点评 本题考查反证法的运用,考查导数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=-2x+1,当x∈R时,f(x)=$\left\{\begin{array}{l}{2}^{-x}-1,x≤0\\-{2}^{x}+1,x>0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$\frac{π}{4}$<α$<\frac{π}{2}$,角α的正弦线、余弦线和正切线的数量分别为a,b,c,由图比较a,b,c的大小;如果$\frac{π}{2}$<α<$\frac{3π}{4}$,则a,b,c的大小关系又如何?(作图并有比较的过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算-sin133°cos197°-cos47°cos73°的结果为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.直线l过直线x+y-2=0与x-y-4=0的交点且平行与直线x-3y-1=0,求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平行四边形形ABCD中,已知AB=8,AD=6,∠BAD=$\frac{2π}{3}$,点E,F分别在边BC,DC上,且BC=3BE,DC=λDF,$\overrightarrow{AE}$•$\overrightarrow{AF}$=16,则λ的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于任意实数a,b,定义max{a,b}=$\left\{\begin{array}{l}{a}&{a≥b}\\{b}&{a<b}\end{array}\right.$,已知在[-4,4]上的奇函数f(x)满足:当0<x≤4时,f(x)=max{2x-1,2-x},若方程f(x)-mx2+1=0恰有两个根,则m的取值范围是(  )
A.[-$\frac{7}{8}$,0)∪($\frac{{e}^{2}1{n}^{2}2}{4}$,1]B.[-$\frac{7}{8}$,0)∪($\frac{1}{e}$,1]
C.(-1,-$\frac{7}{8}$)∪($\frac{{e}^{2}1{n}^{2}2}{4}$,2]D.(-1,0)∪($\frac{1}{e}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.分段函数f(x)=$\left\{\begin{array}{l}{2x+1\\;-2≤x≤0}\\{5x\\;0<x≤3}\end{array}\right.$,求
①函数的定义域,
②f(-1);
③f(1);
④f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,射线OA,OB与x轴的正方向分别成45°与30°的角,过点P(1,0)的直线与两射线分别交于C,D,若线段CD的中点恰好在直线y=$\frac{1}{2}$x上,求CD所在直线的方程.

查看答案和解析>>

同步练习册答案