分析 (1)根据h(2)=4求得指数函数h(x)的解析式,再根据f(0)=0,求得b的值,可得f(x)的解析式.
(2)根据f(x)在R上单调递减,可得2x-1<x+1,求得x的范围.
解答 解:(1)由于h(x)是指数函数,可设h(x)=ax,a>0,a≠1,
∵h(2)=a2=4,∴a=2,∴函数f(x)=$\frac{b-h(x)}{1+h(x)}$=$\frac{b{-2}^{x}}{1{+2}^{x}}$.
∵函数f(x)=$\frac{b-h(x)}{1+h(x)}$是定义域为R的奇函数,故有f(0)=$\frac{b-1}{1+1}$=0,∴b=1,
∴f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$.
(2)∵f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=$\frac{2}{{2}^{x}+1}$-1,在R上单调递减,
故由不等式f(2x-1)>f(x+1),可得2x-1<x+1,求得x<$\frac{2}{3}$,
即原不等式的解集为{x|x<$\frac{2}{3}$ }.
点评 本题主要考查用待定系数法求函数的解析式,函数的奇偶性和单调性的综合应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com