精英家教网 > 高中数学 > 题目详情
设定圆,动圆过点且与圆相切,记动圆圆心的轨迹为.
(1)求轨迹的方程;
(2)已知,过定点的动直线交轨迹两点,的外心为.若直线的斜率为,直线的斜率为,求证:为定值.
(1);(2)见解析

试题分析:(1)求轨迹的方程,由题意定圆,动圆过点且与圆相切,可知点在圆内,由此可得圆内切于圆,可得,根据椭圆定义可知轨迹为椭圆,故可求出轨迹的方程;(2)求证:为定值,由题意直线斜率不为0,可设直线, 设点,由,由根与系数关系得,写出直线的中垂线方程,与直线的中垂线方程,求出点的坐标,即得直线的斜率,从而可得为定值.
试题解析:(1)∵点在圆内 ∴圆内切于圆

∴点的轨迹.的方程为                              5分
(2)由存在 ∴ 直线斜率不为0

设直线      设点 


直线的中垂线方程为:
  ∵ ∴即
 即
同理可得直线的中垂线方程为:                  7分
∴点的坐标满足

   9分

又∵直线的斜率为 ∴               13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,焦点在y轴上,若其离心率为,焦距为8,则该椭圆的方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的半焦距,则的取值范围为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为( )
A.199B.200 C.99D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.

查看答案和解析>>

同步练习册答案