精英家教网 > 高中数学 > 题目详情
3.若f(x)是定义在区间[-4,4]上的偶函数,且在区间(-4,0)内为减函数,则下列选项中正确的是(  )
A.f(0)=0B.f(-1)>f(2)C.f(-2)-f(2)=0D.f(-3)<f($\sqrt{2}$)

分析 利用函数的奇偶性进行判断.

解答 解:∵f(x)是定义在区间[-4,4]上的偶函数,且在区间(-4,0)内为减函数,
∴f(-2)-f(2)=0,
故选:C.

点评 本题主要考查函数奇偶性的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{{\begin{array}{l}{f(x+2)+1,x<3}\\{{3^x},x≥3}\end{array}}\right.$,则f(log34)=(  )
A.4B.28C.37D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,已知M、N分别是AB、AC的中点,用向量方法证明:MN$\stackrel{∥}{=}$$\frac{1}{2}$BC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(π+α)=$\frac{3}{5}$,则cos(α-2π)=$±\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.小张家想利用一面长度超过20m的墙,再用竹篱笆围成一个矩形鸡场,小张家已备足可以围20m长的竹篱笆.试问:矩形鸡场的长和宽各为多少米时,鸡场的面积最大?最大面积是多少平方米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为($\frac{π}{2}$,$\sqrt{2}$),由此点到相邻最低点间的曲线与x轴交于点($\frac{3}{2}$π,0),φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)求这条曲线的函数解析式;
(2)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,a1=1,anan+1=2n(n∈N*
(1)求证数列{an}不是等比数列,并求该数列的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{m}^{2}}$+y2=1,(m>0),直线l不过原点且不行于坐标轴,与椭圆C有两个交点P,Q,线段的中点为M,若直线l的斜率与OM的斜率的乘积为-$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过椭圆的右焦点,椭圆C的上顶点为A,设直线AP,AQ分别交直线x-y-2=0于点S,T,求当|ST|最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若点P在椭圆上,且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,则椭圆离心率的取值范围是$[\frac{\sqrt{2}}{2},1)$.

查看答案和解析>>

同步练习册答案