精英家教网 > 高中数学 > 题目详情

【题目】已知函数 =2.718………),

(I) 当时,求函数的单调区间;

(II)当时,不等式对任意恒成立,

求实数的最大值.

【答案】(1)函数的单调递增区间为,单调递减区间为

(2)符合题意的实数的最大值为.

【解析】试题分析:(1)求函数单调区间,即求导研究导函数的正负,导函数大于零求增区间,导函数小于零求减区间;(2这是不等式恒成立求参的问题,转化为 对任意恒成立,再求导研究函数的单调性,求最值即可.

(1)

可知,

即 此时函数的单调递增区间为,单调递减区间为

(2)当时,不等式

对任意恒成立

时, ,所以上递增,且最小值为

(i)当,即时, 对任意恒成立

上递增, 时, 满足题意; (ii)当,即时,

由上可得存在唯一的实数,使得,可得当时, 上递减,此时不符合题意; 综上得,当时,满足题意,即符合题意的实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,平面平面,且四边形为矩形,四边形为直角梯形,

(Ⅰ)求证:平面

(Ⅱ)求平面与平面所成锐二面角的大小;

(Ⅲ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201910月,工信部颁发了国内首个无线电通信设备进网许可证,标志着基站设备将正式接入公用电信商用网络.手机生产商拟升级设备生产手机,有两种方案可供选择,方案1:直接引进手机生产设备;方案2:对已有的手机生产设备进行技术改造,升级到手机生产设备.该生产商对未来手机销售市场行情及回报率进行大数据模拟,得到如下统计表:

市场销售状态

畅销

平销

滞销

市场销售状态概率

预期年利润数值(单位:亿元)

方案1

70

40

-40

方案2

60

30

-10

1)以预期年利润的期望值为依据,求的取值范围,讨论该生产商应该选择哪种方案进行设备升级?

2)设该生产商升级设备后生产的手机年产量为万部,通过大数据模拟核算,选择方案1所生产的手机年度总成本(亿元),选择方案2所生产的手机年度总成为(亿元).已知,当所生产的手机市场行情为畅销、平销和滞销时,每部手机销售单价分别为0.8万元,(万元),(万元),根据(1)的决策,求该生产商所生产的手机年利润期望的最大值?并判断这个年利润期望的最大值能否达到预期年利润数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数上的最上的最小值为;④函数上单调递增,则以上说法正确的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求直线l的直角坐标方程;

2)已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为45°,若的最大值为6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点在球的球面上,是边长为正三角形,分别是的中点,,则球的体积为_________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥PABC.ABBC,△PAC为等边三角形,二面角PACB的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( )

A.1B.2C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=x22x+1的图象与函数gx)=3cosπx的图象所有交点的横坐标之和等于(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程

1)写出直线的参数方程及曲线的直角坐标方程;

2)若相交于两点,为线段的中点,且,求

查看答案和解析>>

同步练习册答案