【题目】已知函数(, =2.718………),
(I) 当时,求函数的单调区间;
(II)当时,不等式对任意恒成立,
求实数的最大值.
【答案】(1)函数的单调递增区间为和,单调递减区间为;
(2)符合题意的实数的最大值为.
【解析】试题分析:(1)求函数单调区间,即求导研究导函数的正负,导函数大于零求增区间,导函数小于零求减区间;(2)这是不等式恒成立求参的问题,转化为, 对任意恒成立,再求导研究函数的单调性,求最值即可.
(1)
由可知,
令得 或
令得
即 此时函数的单调递增区间为和,单调递减区间为;
(2)当时,不等式 即
令, 对任意恒成立
又
当时, ,所以在上递增,且最小值为
(i)当,即时, 对任意恒成立
在上递增, 当时, 满足题意; (ii)当,即时,
由上可得存在唯一的实数,使得,可得当时, , 在上递减,此时不符合题意; 综上得,当时,满足题意,即符合题意的实数的最大值为.
科目:高中数学 来源: 题型:
【题目】如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成锐二面角的大小;
(Ⅲ)求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月,工信部颁发了国内首个无线电通信设备进网许可证,标志着基站设备将正式接入公用电信商用网络.某手机生产商拟升级设备生产手机,有两种方案可供选择,方案1:直接引进手机生产设备;方案2:对已有的手机生产设备进行技术改造,升级到手机生产设备.该生产商对未来手机销售市场行情及回报率进行大数据模拟,得到如下统计表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 | ||||
预期年利润数值(单位:亿元) | 方案1 | 70 | 40 | -40 |
方案2 | 60 | 30 | -10 |
(1)以预期年利润的期望值为依据,求的取值范围,讨论该生产商应该选择哪种方案进行设备升级?
(2)设该生产商升级设备后生产的
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数在上的最上的最小值为;④函数上单调递增,则以上说法正确的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的方程为,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求直线l的直角坐标方程;
(2)已知P是曲线C上的一动点,过点P作直线交直线于点A,且直线与直线l的夹角为45°,若的最大值为6,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥P﹣ABC中.AB⊥BC,△PAC为等边三角形,二面角P﹣AC﹣B的余弦值为,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( )
A.1B.2C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程.
(1)写出直线的参数方程及曲线的直角坐标方程;
(2)若与相交于,两点,为线段的中点,且,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com