【题目】如图,多面体中,平面平面,,四边形为平行四边形.
(1)证明:;
(2)若,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为F,点B是椭圆C的短轴的一个端点,ΔOFB的面积为,椭圆C上的两点H、G关于原点O对称,且、的等差中项为2
(1)求椭圆的方程;
(2)是否存在过点M(2,1)的直线与椭圆C交于不同的两点P、Q,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】贵阳市交管部门于2018年4月对贵阳市长期执行的“两限”政策进行了调整,调整后贵阳市贵A普客小汽车拥有和外地牌照汽车一样的驶入一环开四停四的权利,为统计开放政策实施后贵阳市一环内城区的交通流量状况,市交管部门抽取了某月30天内的日均汽车流量与实际容纳量进行对比,比值记为,若该比值不超过1称为“畅通”,否则称为“拥堵”,如图所示的程序框图实现的功能是( )
A.求30天内交通的畅通率B.求30天内交通的拥堵率
C.求30天内交通的畅通天数D.求30天内交通的拥堵天数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱AA1,AD上的点,且AE=EA1,AFFD.
(1)求证:平面EC1D1⊥平面EFB;
(2)求二面角E﹣FB﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线与轴交于点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com