精英家教网 > 高中数学 > 题目详情

【题目】如图,多面体中,平面平面四边形为平行四边形.

1)证明:

2)若,求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)先通过平面平面得到,再结合,可得平面,进而可得结论;

2)取的中点的中点,连接,以点为坐标原点,分别以轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果.

解:(1)因为平面平面,交线为,又

所以平面,又

平面平面

所以,

2)取的中点的中点,连接,则平面平面

以点为坐标原点,分别以轴,轴,轴建立空间直角坐标系如图所示

    

已知,则

设平面的一个法向量

,则

平面的一个法向量为

.

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

1)求椭圆的方程;

2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,点B是椭圆C的短轴的一个端点,ΔOFB的面积为,椭圆C上的两点HG关于原点O对称,且的等差中项为2

1)求椭圆的方程;

2)是否存在过点M21)的直线与椭圆C交于不同的两点PQ,且使得成立?若存在,试求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】贵阳市交管部门于20184月对贵阳市长期执行的“两限”政策进行了调整,调整后贵阳市贵A普客小汽车拥有和外地牌照汽车一样的驶入一环开四停四的权利,为统计开放政策实施后贵阳市一环内城区的交通流量状况,市交管部门抽取了某月30天内的日均汽车流量与实际容纳量进行对比,比值记为,若该比值不超过1称为“畅通”,否则称为“拥堵”,如图所示的程序框图实现的功能是(

A.30天内交通的畅通率B.30天内交通的拥堵率

C.30天内交通的畅通天数D.30天内交通的拥堵天数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EF分别是棱AA1AD上的点,且AE=EA1AFFD.

1)求证:平面EC1D1⊥平面EFB

2)求二面角EFBA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数fx=,其中a>0.

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|3x4||x+1|

1)解不等式fx)>5

2)若存在实数x满足ax+afx)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆将圆的圆周分为四等份,且椭圆的离心率为.

1)求椭圆的方程;

2)若直线与椭圆交于不同的两点,且的中点为,线段的垂直平分线为,直线轴交于点,求的取值范围.

查看答案和解析>>

同步练习册答案