精英家教网 > 高中数学 > 题目详情

【题目】已知曲线 所围成封闭图形面积为,曲线是以曲线与坐标轴的交点为顶点的椭圆, 离心率为. 平面上的动点为椭圆外一点,且过

引椭圆的两条切线互相垂直.

1求曲线的方程;

(2)求动点的轨迹方程.

【答案】(1)(2)

【解析】试题分析:1利用和离心率为得到关于的方程组,进而求出曲线的方程;(2设出直线方程,与椭圆方程联立,得到关于的一元二次方程,利用判别式、根与系数的关系及两直线垂直进行求解.

试题解析:1因为所围成封闭图形面积

椭圆的离心率为,所以,解得

故椭圆的方程为

2)设,当两切线的斜率存在且不为时,设的方程为

联立直线和椭圆的方程,得,消去并整理,得:

因为直线和椭圆有且仅有一个交点,

化简并整理,得.*

同理直线的斜率满足方程*,又因为两切线垂直,所以两切线斜率之积.

当切线的斜率为, 的斜率不存在,此时,符合①式.

综上所述,点的轨迹方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形, .

(1)求证: 平面

(2)线段上是否存在一点,使得 ?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.

(1)求f(x)的解析式,并画出f(x)的图象;

(2)设g(x)=f(x)-k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数.

(1)试确定的值;

(2)判断的单调性,并证明之

(3)若方程上有解,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=12,直线l:4x+3y=25,设点A是圆C上任意一点,求点A到直线l的距离小于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ( )

平均数标准差平均数且标准差

平均数且极差小于或等于2众数等于1且极差小于或等于4

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直线l:3x-y-1=0上求点P和Q,使得

(1)点P到点A(4,1)和B(0,4)的距离之差最大;

(2)点Q到点A(4,1)和C(3,4)的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CA=CD= AB=1, =1,sin∠BCD=

(1)求BC的长;
(2)求四边形ABCD的面积;
(3)求sinD的值.

查看答案和解析>>

同步练习册答案