精英家教网 > 高中数学 > 题目详情

(14分)病人按规定的剂量服用某药物,测得服药后,每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.
(1)求函数的解析式;
(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?

(1);(2)有效治疗时间为小时。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)(1)计算
(2)   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)
(Ⅰ)求的函数解析式;
(Ⅱ)求的最大值,以及取得最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数是定义在上的奇函数,且
(1)确定函数的解析式。
(2)用定义法证明上是增函数。
(3)解关于t的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)建造一个容积为,深为的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数
(1)在右图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.
(3) 求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次, 如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P和Q(万元),它们与投入资金x(万元)的关系有经验公式:P=x,Q=.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少,能获得的最大利润为多少?

查看答案和解析>>

同步练习册答案